• 제목/요약/키워드: carbon aerogel

검색결과 30건 처리시간 0.023초

2단계 촉매 분해공정을 이용한 리그닌 유래 선택적 페놀화합물 생산 (Selective Production of Monomeric Phenols from Lignin via Two-step Catalytic Cracking Process)

  • 김재영;허수정;박신영;최인규;최준원
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권3호
    • /
    • pp.278-287
    • /
    • 2017
  • 본 연구에서는 2단계 촉매 분해공정 시스템을 이용하여 효과적으로 리그닌을 분해하였으며 리그닌 분해산물로 액상의 리그닌 오일, 촤, 가스가 생성되었다. 1차 촉매 분해공정에서는 MgO, CaO, Pt/C 촉매를 사용하였으며 Pt/C 촉매를 사용했을 때 가장 높은 리그닌 오일 수율(76.2 wt%) 및 가장 낮은 촤 수율(4.1 wt%)을 얻을 수 있었다. 리그닌 오일의 GC-MS/FID 분석을 통해 guaiacol, 4-ethylphenol, 4-methylguaiacol, 4-ethylguaiacol, syringol 등 18종류의 페놀화합물을 검출하였으며 Pt/C 조건에서 생산된 페놀화합물 수율이 97.8 mg/g lignin로 가장 높았다. 한편 MgO와 CaO에서 생산된 페놀화합물은 촉매에 흡착되어 상대적으로 낮은 수율을 보였다. Pt/C 조건에서 생산된 리그닌 오일을 다공성 구조를 가지는 Pd/activated carbon aerogel 촉매 하에서 추가 분해하였다. 2차 촉매 분해공정을 통해 상대적으로 선택성이 높은 4가지 페놀화합물(4-ethylguaiacol, 4-propylguaiacol, 4-ethylsyringol, 4-propylsyringol)을 0.89 - 1.82 wt% 수준으로 생산하였다.

A review: synthesis and applications of graphene/chitosan nanocomposites

  • Yuan, Hui;Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • 제17권1호
    • /
    • pp.11-17
    • /
    • 2016
  • Recently, with continuous developments in the field of materials science, graphene oxide (GO) has emerged as a promising material with excellent electrical, thermal, mechanical, and optical properties, which play important roles in most fields. Researchers have achieved considerable progress with graphene. Chitosan (CS) is a natural polymer that has been studied intensively owing to its specific formation, high chemical resistance, and excellent physical properties. These outstanding properties have led to its universal use in applications such as textile fabrics, tissue engineering, medicine and health, coatings, and paints. By combining the advantages of GO and CS, different types of promising materials can be obtained. This review discusses the preparation of GO-CS fibers, hydrogel and aerogel, and the applications of GO-CS nanocomposites. In addition, directions for future research on graphene material composites are discussed.

Hydrogen storage capacity of highly porous carbons synthesized from biomass-derived aerogels

  • Choi, Yong-Ki;Park, Soo-Jin
    • Carbon letters
    • /
    • 제16권2호
    • /
    • pp.127-131
    • /
    • 2015
  • In this work, highly porous carbons were prepared by chemical activation of carbonized biomass-derived aerogels. These aerogels were synthesized from watermelon flesh using a hydrothermal reaction. After carbonization, chemical activation was conducted using potassium hydroxide to enhance the specific surface area and microporosity. The micro-structural properties and morphologies were measured by X-ray diffraction and scanning electron microscopy, respectively. The specific surface area and microporosity were investigated by $N_2$/77 K adsorption-desorption isotherms using the Brunauer-Emmett-Teller method and Barrett-Joyner-Halenda equation, respectively. Hydrogen storage capacity was dependent on the activation temperature. The highest capacity of 2.7 wt% at 77 K and 1 bar was obtained with an activation temperature of $900^{\circ}C$.

대용량 액체 수소 저장탱크를 위한 다층단열재의 단열성능 분석 (Adiabatic Performance of Layered Insulating Materials for Bulk LH2 Storage Tanks)

  • 김경호;신동환;김용찬;강상우
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.642-650
    • /
    • 2016
  • One of the most feasible solution for reducing the excessive energy consumption and carbon dioxide emission is usage of more efficient fuel such as hydrogen. As is well known, there are three viable technologies for storing hydrogen fuel: compressed gas, metal hydride absorption, and cryogenic liquid. In these technologies, the storage for liquid hydrogen has better energy density by weight than other storage methods. However, the cryogenic liquid storage has a significant disadvantage of boiling losses. That is, high performance of thermal insulation systems must be studied for reducing the boiling losses. This paper presents an experimental study on the effective thermal conductivities of the composite layered insulation with aerogel blankets($Cryogel^{(R)}$ Z and $Pyrogel^{(R)}$ XT-E) and Multi-layer insulation(MLI). The aerogel blankets are known as high porous materials and the good insulators within a soft vacuum range($10^{-3}{\sim}1$ Torr). Also, MLI is known as the best insulator within a high vacuum range(<$10^{-6}{\sim}10^{-3}$ Torr). A vertical axial cryogenic experimental apparatus was designed to investigate the thermal performance of the composite layered insulators under cryogenic conditions as well as consist of a cold mass tank, a heat absorber, annular vacuum space, and an insulators space. The composite insulators were laminated in the insulator space that height was 50 mm. In this study, the effective thermal conductivities of the materials were evaluated by measuring boil-off rate of liquid nitrogen and liquid argon in the cold mass tank.

An analytical study on free vibration of magneto electro micro sandwich beam with FG porous core on Vlasov foundation

  • Kazem Alambeigi;Mehdi Mohammadimehr;Mostafa Bamdad
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.423-439
    • /
    • 2023
  • The aim of this paper is to investigate the free vibration behavior of the micro sandwich beam composing of five layers such as functionally graded (FG) porous core, nanocomposite reinforced by carbon nanotubes (CNTs) and piezomagnetic/piezoelectric layers subjected to magneto electrical potential resting on silica aerogel foundation. The effect of foundation has been taken into account using Vlasov model in addition to rigid base assumption. For this purpose, an iterative technique is applied. The material properties of the FG porous core and FG nanocomposite layers are considered to vary throughout the thickness direction of the beams. Based on the Timoshenko beam theory and Hamilton's principle, the governing equations of motion for the micro sandwich beam are obtained. The Navier's type solution is utilized to obtain analytical solutions to simply supported micro sandwich beam. Results are verified with corresponding literatures. In the following, a study is carried out to find the effects of the porosity coefficient, porous distribution, volume fraction of CNT, the thickness of silica aerogel foundation, temperature and moisture, geometric parameters, electric and magnetic potentials on the vibration of the micro sandwich beam. The results are helpful for the design and applications of micro magneto electro mechanical systems.

환원 그래핀 옥사이드 복합 촉매가 코팅된 스크린 프린트 탄소전극 기반 Indole-3-Acetic Acid 전기화학분석법 연구 (Study of an electrochemical analysis method for Indole-3-Acetic Acid based on reduced graphene oxide composite catalyst coated screen-printed carbon electrode)

  • 원유진;김민영;박영배;이규환
    • 한국표면공학회지
    • /
    • 제57권4호
    • /
    • pp.265-273
    • /
    • 2024
  • An amperometric sensor for measuring indole-3-acetic acid (IAA) was studied based on a screen-printed carbon electrode (SPCE) coated with a reduced graphene oxide composite electrocatalyst. The PEI-GO dispersion is uniformly formed through a nucleophilic substitution reaction between the active amine group of Polyethyleneimine (PEI) and the epoxide group exposed on the surface of graphene oxide. And The 3-dimensional PEI-rGO AG (Polyethyleneimine-reduced graphene oxide aerogel) complex was easily prepared through simple heat treatment of the combined PEI-GO dispersion. The proposed composite catalyst electrode, PEI-rGO AG/SPCE, showed a two linear relationship in the low and high concentrations in IAA detection, and the linear equation was Ipa = 0.2883C + 0.0883 (R2=0.9230) at low concentration and Ipa = 0.00464C + 0.6623 (R2=0.9894) at high concentration was proposed, and the detection limit was calculated to be 203.5nM±33.2nM. These results showed the applicability of the PEI-rGO AG composite catalyst as an electrode material for electrocatalysts for the detection of IAA.

EDLC 전극용 카본에어로젤의 합성조건에 따른 기공구조 및 전기화학적 특성 (Pore Structure and Electrochemical Properties of Carbon Aerogels as an EDLC-Electrode with Different Preparation Conditions)

  • 서혜인;정지철;김명수
    • 한국재료학회지
    • /
    • 제28권1호
    • /
    • pp.50-61
    • /
    • 2018
  • Various carbon aerogels (CAs) were prepared from polymerization of resorcinol and formaldehyde and applied as the electrode materials of an electric double layer capacitor (EDLC) with the aim of controlling the textural and electrochemical properties of CAs by the type of base catalyst and the ratio of resorcinol to catalyst (R/C). The CAs from $NaHCO_3$ and $KHCO_3$ with $H^+$ ions had higher specific surface areas but exhibited lower electrochemical properties than those from $K_2CO_3$ and $Na_2CO_3$, which had more uniform pore size distributions. The electrochemical properties of $Na_2CO_3$ were superior to those of $K_2CO_3$ probably because the polarizing power of $Na^+$ ions was higher than $K^+$ ions. With an increasing R/C ratio, the pore sizes of CA showed a tendency to increase but the uniformity of the pore size distribution got worse. For the four base catalysts, the highest electrochemical property was obtained at the R/C ratio of 500.

전기이중층 커패시터용 탄소 에어로겔 전극의 전기화학적 거동 연구 (Electrochemical Behaviors of Carbon Aerogel Electrodes for Electric Double Layer Capacitors)

  • 양재연;서민강;김병석
    • Composites Research
    • /
    • 제33권6호
    • /
    • pp.336-340
    • /
    • 2020
  • 본 연구에서는 헥사 메틸렌 테트라민을 촉매로 사용하여 이소프로판올에서 레소시놀과 퍼푸랄을 졸-겔 중축합한 후 이소프로판올 동결 건조 조건에서 유기 겔을 직접 건조시킨 후 질소 분위기에서 탄화시켜 탄소 에어로겔을 제조하였다. 탄소 에어로겔의 제조 조건은 퍼푸랄에 대한 레소시놀의 몰비를 변경하여 조사하였다. 탄소에어로겔의 기공 구조에 대한 제조조건의 영향은 질소 흡착 등온선에 의해 고찰하였다. 탄소 에어로겔의 특성은 주사전자현미경과 적외선 분광법을 가지고 측정하였다. 전기 이중층 커패시터에서 전극으로서의 탄소 에어로겔의 기공 접근성과 성능을 전기 화학적으로 고찰하였다. 결과적으로 BET 표면적과 비용량은 R/C 비율에 따라 증가하였으며, 765 ㎡/g 및 132 F/g의 최대 값은 각각 R/C 비율 200에서 달성되었다. 결론적으로 R/C 비율을 높이면 CA 전극의 평균 기공 크기가 증가하여 시스템의 속도 성능이 향상됨을 확인하였다.

순수/불투명화 실리카 에어로겔의 기계적 강도 및 열전도도 (Mechanical Strength and Thermal Conductivity of Pure/Opacified Silica Aerogels)

  • 현상훈;이찬호;김동준;성대진
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.969-978
    • /
    • 1997
  • The properties of microstructure, hydrophobicity/hydrophilicity, mechanical strength, and thermal conduction of pure/opacified silica aerogels synthesized by the sol-gel supercritical drying technique were investigated. The hydrophobic surface of opacified silica aerogels doped with carbon (0.13 g/cm3 density, 94% porosity, 580 m2/g specific surface area) transformed to hydrophilic surface after heat-treated above 30$0^{\circ}C$. The values of compressive modulus (1.85 MPa) and strength (0.5 MPa) of opacfied silica aerogels were about 20 times higher than those of pure silica aerogels. The mechanical properties of pure silica aerogels heat-treated at $700^{\circ}C$ were also considerably improved without changing their porosity and density. Particularly, compressive modulus and compressive strength of pure silica aerogels GPSed under 100$0^{\circ}C$ and 80 bar were improved 140 and 37 times, respectively. Thermal conductivities of pure/opacified silica aerogels measured at room temperature and 227$^{\circ}C$ were about 0.013 and 0.019 W/m.K, respectively, and were to be found very low value of 0.004 W/m.K below 10 torr pressure at room temperature.

  • PDF