Browse > Article
http://dx.doi.org/10.5658/WOOD.2017.45.3.278

Selective Production of Monomeric Phenols from Lignin via Two-step Catalytic Cracking Process  

Kim, Jae-Young (Institute of Green-Bio Science and Technology, Seoul National University)
Heo, Sujung (Graduate School of International Agricultural Technology, Seoul National University)
Park, Shin Young (Department of Forest Sciences, CALS, Seoul National University)
Choi, In-Gyu (Department of Forest Sciences, CALS, Seoul National University)
Choi, Joon Weon (Institute of Green-Bio Science and Technology, Seoul National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.45, no.3, 2017 , pp. 278-287 More about this Journal
Abstract
In this study, lignin was efficiently degraded via two-step catalytic cracking process and lignin-oil, char, and gas was produced as lignin degraded products. Three kinds of catalysts (MgO, CaO, and Pt/C) were used in first catalytic cracking step and the highest lignin-oil yield (76.2 wt%) was obtained in Pt/C catalyst with the smallest char formation (4.1 wt%). GC-MS/FID analysis revealed that 18 kinds of monomeric phenols existed in lignin-oil and sum of them was the highest in Pt/C condition (97.8 mg/g lignin). Meanwhile, relatively lower yield of monomeric phenols was produced in MgO and CaO condition because of their absorption on catalysts. Lignin-oil produced over Pt/C was introduced to second catalytic cracking process with porous Pd/activated carbon aerogel catalyst. From this process, four kinds of monomeric phenols such as 4-ethylguaiacol, 4-propylguaiacol, 4-ethylsyringol, 4-propylsyringol were selectively produced at 0.89 - 1.82 wt% level.
Keywords
lignin; catalytic cracking; carbon aerogel; monomeric phenols; GC-MS/FID;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Saidi, M., Samimi, F., Karimipourfard, D., Nimmanwudipong, T., Gates, B.C., Rahimpour, M.R. 2014. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy & Environmental Science 7(1): 103-129.   DOI
2 Song, Q., Wang, F., Cai, J., Wang, Y., Zhang, J., Yu, W., Xu, J. 2013. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process. Energy & Environmental Science 6(3): 994-1007.   DOI
3 Wang, Y.-Y., Ling, L.-L., Jiang, H. 2016. Selective hydrogenation of lignin to produce chemical commodities by using a biochar supported Ni-Mo 2 C catalyst obtained from biomass. Green Chemistry 18(14): 4032-4041.   DOI
4 Ye, Y., Zhang, Y., Fan, J., Chang, J. 2012. Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis. Bioresource Technology 118: 648-651.   DOI
5 Alonso, F., Riente, P., Rodriguez-Reinoso, F., Ruiz-Martinez, J., Sepulveda-Escribano, A., Yus, M. 2009. A Highly Reusable Carbon-Supported Platinum Catalyst for the Hydrogen-Transfer Reduction of Ketones. ChemCatChem 1(1): 75-77.   DOI
6 Bouxin, F.P., McVeigh, A., Tran, F., Westwood, N.J., Jarvis, M.C., Jackson, S.D. 2015. Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst: part 1-impact of the lignin structure. Green Chemistry 17(2): 1235-1242.   DOI
7 Brunow, G., Lundquist, K. 2010. Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). CRC Press, Boca Raton, USA.
8 Chaudhary, R., Dhepe, P.L. 2017. Solid base catalyzed depolymerization of lignin into low molecular weight products. Green Chemistry 19: 778-788.   DOI
9 Das, J., Halgeri, A.B. 2000. Selective synthesis of para-ethylphenol over pore size tailored zeolite. Applied Catalysis A: General 194: 359-363.
10 Fang, B., Binder, L. 2006. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. Journal of Power Sources 163(1): 616-622.   DOI
11 Hanzawa, Y., Kaneko, K., Pekala, R., Dresselhaus, M. 1996. Activated carbon aerogels. Langmuir 12(26): 6167-6169.   DOI
12 Fang, Z., Sato, T., Smith, R.L., Inomata, H., Arai, K., Kozinski, J.A. 2008. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technology 99(9): 3424-3430.   DOI
13 Farag, S., Kouisni, L., Chaouki, J. 2014. Lumped approach in kinetic modeling of microwave pyrolysis of kraft lignin. Energy & Fuels 28(2): 1406-1417.   DOI
14 Gosselink, R.J., Teunissen, W., Van Dam, J.E., De Jong, E., Gellerstedt, G., Scott, E.L., Sanders, J.P. 2012. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresource Technology 106: 173-177.   DOI
15 Huang, X., Atay, C., Koranyi, T.I., Boot, M.D., Hensen, E.J. 2015. Role of Cu-Mg-Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol. ACS Catalysis 5(12): 7359-7370.   DOI
16 Huang, S., Mahmood, N., Tymchyshyn, M., Yuan, Z., Xu, C.C. 2014. Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source. Bioresource Technology 171: 95-102.   DOI
17 Jegers, H.E., Klein, M.T. 1985. Primary and secondary lignin pyrolysis reaction pathways. Industrial & Engineering Chemistry Process Design and Development 24(1): 173-183.   DOI
18 Kim, J.-Y., Oh, S., Hwang, H., Cho, T.-s., Choi, I.-G., Choi, J.W. 2013. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub-and supercritical ethanol. Chemosphere 93(9): 1755-1764.   DOI
19 Laskar, D.D., Tucker, M.P., Chen, X., Helms, G.L., Yang, B. 2014. Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons. Green Chemistry 16(2): 897-910.   DOI
20 Kim, J.-Y., Park, J., Kim, U.-J., Choi, J.W. 2015. Conversion of lignin to phenol-rich oil fraction under supercritical alcohols in the presence of metal catalysts. Energy & Fuels 29(8): 5154-5163.   DOI
21 Ling, S.K., Tian, H.-Y., Wang, S., Rufford, T., Zhu, Z., Buckley, C. 2011. KOH catalysed preparation of activated carbon aerogels for dye adsorption. Journal of Colloid and Interface Science 357(1): 157-162.   DOI
22 Long, J., Zhang, Q., Wang, T., Zhang, X., Xu, Y., Ma, L. 2014. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresource technology 154: 10-17.   DOI
23 Lora, J.H., Glasser, W.G. 2002. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment 10(1-2): 39-48.   DOI
24 Moreno-Castilla, C., Maldonado-Hodar, F. 2005. Carbon aerogels for catalysis applications: An overview. Carbon 43(3): 455-465.   DOI
25 Namane, A., Mekarzia, A., Benrachedi, K., Belhaneche-Bensemra, N., Hellal, A. 2005. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl 2 and H 3 PO 4. Journal of Hazardous Materials 119(1): 189-194.   DOI
26 Park, H.W., Hong, U.G., Lee, Y.J., Song, I.K. 2011. Decomposition of 4-phenoxyphenol to aromatics over palladium catalyst supported on activated carbon aerogel. Applied Catalysis A: General 409: 167-173.
27 Saha, B.C., Nichols, N.N., Qureshi, N., Kennedy, G.J., Iten, L.B., Cotta, M.A. 2015. Pilot scale conversion of wheat straw to ethanol via simultaneous saccharification and fermentation. Bioresource technology 175: 17-22.   DOI
28 Park, J., Kim, J.Y., Choi, J.W. 2015. Degradation of Plant Lignin with The Supercritical Ethanol and Ru/C Catalyst Combination for Lignin-oil. Journal of The Korean Wood Science & Technology 43(3): 355-363.   DOI