• Title/Summary/Keyword: carbon addition

Search Result 3,169, Processing Time 0.025 seconds

Microscopic Characterization of Cement Composites with Carbon Nanotubes (탄소나노튜브가 첨가된 시멘트복합체의 미시적특성분석)

  • Kim, Young-Min;Lee, Gun Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.176-177
    • /
    • 2019
  • As a result of the Rietveld analysis to determine the effect of carbon nanotubes on the hydration products of cement composites, the quantitative difference of hydration products according to the addition rate of carbon nanotubes was not significant. Ettringite, an early hydration product, was measured to be slightly higher than the planes with carbon nanotubes over all ages. Therefore, it seems that carbon nanotubes have no effect on the hydration production in cement paste.

  • PDF

Effect of carbon and boron addition on sintering behavior and mechanical properties of hot-pressed SiC (카본 및 보론 첨가가 탄화규소 열간 가압 소결거동 및 기계적 특성에 미치는 영향)

  • Ahn, Jong-Pil;Chae, Jae-Hong;Kim, Kyoung-Hun;Park, Joo-Seok;Kim, Dae-Gean;Kim, Hyoung-Sun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • SiC has an excellent resistance to oxidation and corrosion, high temperature strength and good thermal conductivity. However, it is difficult to density because of its highly covalent bonding characteristics. Hot-press sintering process was applied to fabricate fully densified SiC ceramics with carbon and boron addition as a sintering additive. The addition of carbon improved the mechanical properties of SiC because it could induce a fine and homogeneous microstructure by the suppression of abnormal growth of SiC grain. Also, the addition of carbon could control the phase transformation of SiC. The phase transformation of 6H to 4H increased with sintering temperature but the addition of carbon decreased that kind of phase transformation.

Densification of 4D Carbon Fiber Performs with Mesophase Pitch as Matrix-Precursor

  • Joo, Hyeok-Jong;Lee, Jae-Won
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.173-180
    • /
    • 2005
  • In this study, AR (aromatic resin) pitch was employed as the matrix-precursor for carbon/carbon composite because it exhibits much higher coke yield than coal tar pitch. As a result, a fabrication process of carbon/carbon composites can be shortened. It has been known that the pitches may cause swolling problem during the carbonization process. In order to restrain the swelling occurrence, a small quantity of carbon black was added to the AR pitch. Due to addition of carbon black the swelling was decreased largely and the perform can be infiltrated with the AR pitch. The densification efficiency of the performs was compared with various matrix-precursors. The coke yield of matrixprecursors, the morphology and the degree of graphitization of carbon matrix were analyzed.

  • PDF

Effect of $H_{2}/N_{2}$ Sintering Atmosphere on the Carbon Content and Mechanical Properties in the Metal Injection Molding of Fe-Ni Mixed Powder ($H_{2}/N_{2}$ 혼합가스 혼합가스 소결분위기 변화가 사출성형한 Fe-Ni 혼합분말의 탄소량과 기계적 성질에 미치는 영향)

  • 구광덕
    • Journal of Powder Materials
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 1996
  • The effect of$H_{2}/N_{2}$gas sintering atmosphere on the carbon content and mechanical properties during the metal injection molding process of carbonyl iron-nickel powder was studied. The carbon content of the specimen after debinding in the pure$N_{2}$atmosphere appeared 0.78 wt%. After showing the maximum value of 1.48 wt.% in the debinding atmosphere of 10%$H_{2}/N_{2}$gas mixture, the carbon content of the debinded specimen decreased gradually with increasing the$H_2$content in the$H_{2}/N_{2}$gas mixture. The carbon contents of the sintered specimen were 0.46~0.63wt% in Na gas atmosphere, while they appeared extremely low above 40%$H_{2}/N_{2}$gas atmosphere. The relative sintered density increased abruptly from 88~90% to 93~96% with the addition of Ni, while the density nearly unchanged above 2% Ni addition. The sintered density increased with increasing the fraction of$H_{2} in H_{2}/N_{2}$gas mixture. Tensile strength and hardness increased, and elongation decreased with increasing carbon and Ni content. In spite of high carbon content of 0.63 wt%, the superior elongation value of 10% was shown.

  • PDF

Effect of Graphite Powder Addition on the Mechanical Properties of Carbon/Carbon Composites (흑연분말의 첨가가 탄소/탄소 복합재료의 물성에 미치는 영향)

  • 신준혁;황성덕;강태진
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.72-80
    • /
    • 2000
  • Effect of graphite powder addition on the mechanical properties of carbon fiber reinforced carbon composites (C/C composites) was investigated. Greenbody (G/B) with 0~30wt.% graphite powder addition to phenol resin was prepared and carbonized at $1000^{\circ}C$ to make C/C composites. Flexural strengths of 20wt.% graphite powder additions showed maximum values in the both case of G/B and C/C composites. But, at the graphite addition over 20wt.%, there was negative effect due to the matrix inhomogeneity. Flexural strength of cured resin without graphite Powder was higher than that with graphite. However, flexural strength of carbonized resin with graphite increased three times as much as that of carbonized resin without graphite. Because the addition of graphite powder effects the restraint of shrinkage after carbonization and the deflection of crack path. In Mode II ENF test, energy release rates($G_{II}$) of G/B and C/C composites with the 20w1.% addition of graphite were both increased. But, the addition of graphite was more effective to the increase of $G_{II}$ in C/C composites than that in G/B.

  • PDF

NO Gas Sensor with Enhanced Sensitivity Using Activated Carbon Prepared from Pyrolysis Fuel Oil and Polyethylene Terephthalate (열분해 연료유 및 PET 기반 활성탄을 이용한 NO 가스 센서의 감도 향상 연구)

  • Kwak, Cheol Hwan;Seo, Sang Wan;Kim, Min Il;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • In this study, a sensor for detection of nitric oxide (NO) gas was developed using petroleum pitch-based activated carbon which was synthesized from pyrolysis fuel oil (PFO). Polyethylene terephthalate (PET) was added to increase molecular weight by stimulating a polymerization of components in PFO during the pitch synthesis process. The increase in the molecular weight of pitch contributed to the improvement of textural properties of activated carbon, such as the specific surface area and micropore volume. It also enhanced the sensitivity of NO gas sensor based on the activated carbon. In addition, the effect of PET addition during the pitch synthesis on the surface oxygen content and conductivity of activated carbon was investigated. Finally, the correlation of the sensitivity with physical properties of activated carbon was analyzed.

Antioxidation Characteristics of Surface-Modified Carbon in ${Al_2}{O_3}$-C Refractory (${Al_2}{O_3}$-C계 내화물에서 표면개질된 탄소의 산화특성)

  • 홍영호;김동한;심광보
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.583-588
    • /
    • 2000
  • Antioxidation characteristics of carbon at high temperature with the co-addition of Al and Si powder in Al2O3-C system refractory were analyzed. The use of surface-modified phosphate carbon as a starting material was found to be very effective in improving the mixing effect of raw materials and antioxidation behavior of carbon. In particular, this effect was dominant at higher temperatures than 130$0^{\circ}C$.

  • PDF

Effect of Interstitial Elements on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-2Ni Alloys (오스테나이트계 Fe-18Cr-10Mn-2Ni 합금의 연성-취성 천이 거동에 미치는 침입형 원소의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.649-654
    • /
    • 2013
  • The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.

A Study on the Characteristics of Pollutant Removal in Secondary Effluent from Wastewater Treatment Plant Using Silver Nanoparticles on Activated Carbon (은나노 활성탄에 의한 하수 2차 처리수 중의 오염물질 제거 특성에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.353-360
    • /
    • 2014
  • This study targets the pollutant removal of secondary effluent from final clarifiers in wastewater treatment plant using silver nanoparticles on activated carbon. The removal efficiency and treatment characteristics of pollutant are anlayzed by perfoming experiments using granular activated carbon with silver nanoparticles and ordinary granular activated carbon. The specific surface area of granular activated carbon with silver nanoparticles is smaller than that of ordinary granular activated carbon. However, the removal efficiency of $COD_{Mn}$, T-N and T-P in experiments using activated carbon with silver nanoparticles are higher than that in experiment using ordinary granular activated carbon. That means the case of activated carbon with silver nanoparticles is much better at treatment activity. In addition, activated carbon with silver nanoparticles has antimicrobial activity because there is no microbe on the surface of it after experiments.

Theoretical study on electrical behavior of carbon chain inserted single-walled carbon nanotubes compared with Pt doped one

  • Cui, Hao;Zhang, Xiaoxing;Xiao, Hanyan;Tang, Ju
    • Carbon letters
    • /
    • v.25
    • /
    • pp.55-59
    • /
    • 2018
  • Carbon chain inserted carbon nanotubes (CNTs) have been experimentally proven having undergone pronounced property change in terms of electrical conductivity compared with pure CNTs. This paper simulates the geometry of carbon chain inserted CNTs and analyzes the mechanism for conductivity change after insertion of carbon chain. The geometric simulation of Pt doped CNT was also implemented for comparison with the inserted one. The results indicate that both modification by Pt atom on the surface of CNT and addition of carbon chain in the channel of the tube are effective methods for transforming the electrical properties of the CNT, leading to the redistribution of electron and thereby causing the conductivity change in obtained configurations. All the calculations were obtained based on density functional theory method.