• Title/Summary/Keyword: carbon accounting

Search Result 84, Processing Time 0.025 seconds

A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams

  • Kheroubi, Boumediene;Benzair, Abdelnour;Tounsi, Abdelouahed;Semmah, Abdelwahed
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.251-264
    • /
    • 2016
  • In this paper, a simple and refined nonlocal hyperbolic higher-order beam theory is proposed for bending and vibration response of nanoscale beams. The present formulation incorporates the nonlocal scale parameter which can capture the small scale effect, and it considers both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements across the thickness without employing shear correction factor. The highlight of this formulation is that, in addition to modeling the displacement field with only two unknowns, the thickness stretching effect (${\varepsilon}_z{\neq}0$) is also included in the present model. By utilizing the Hamilton's principle and the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale beam are reformulated. Verification studies demonstrate that the developed theory is not only more accurate than the refined nonlocal beam theory, but also comparable with the higher-order shear deformation theories which contain more number of unknowns. The theoretical formulation proposed herein may serve as a reference for nonlocal theories as applied to the static and dynamic responses of complex-nanobeam-system such as complex carbon nanotube system.

Critical heat flux in a CANDU end shield - Influence of shielding ball diameter

  • Spencer, Justin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1343-1354
    • /
    • 2022
  • Experiments were performed to measure the critical heat flux (CHF) on a vertical surface abutting a coarse packed bed of spherical particles. This geometry is representative of a CANDU reactor calandria tubesheet facing the end shield cavity during the in-vessel retention (IVR) phase of a severe accident. Deionized light water was used as the working fluid. Low carbon steel shielding balls with diameters ranging from 6.4 to 12.7 mm were used, allowing for the development of an empirical correlation of CHF as a function of shielding ball diameter. Previously published data is used to develop a more comprehensive empirical correlation accounting for the impacts of both shielding ball diameter and heating surface height. Tests using borosilicate shielding balls demonstrated that the dependence of CHF on shielding ball thermal conductivity is insignificant. The deposition of iron oxide particles transported from shielding balls to the heating surface is verified to increase CHF non-trivially. The results presented in this paper improve the state of the knowledge base permitting quantitative prediction of CHF in the CANDU end shield, refining our ability to assess the feasibility of IVR. The findings clarify the mechanisms governing CHF in this scenario, permitting identification of potential future research directions.

Framework to Compute Vehicle Emission Costs Associated with Work Zones

  • Shrestha, K. Joseph;Adebiyi, Jeremiah;Uddin, Mohammad Moin;Sturgill, Roy
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.952-959
    • /
    • 2022
  • Active construction work zones will result in longer travel time and/or longer travel distances for road users because of reduced speed limits and/or detours. This results in increased fuel consumption and increased emissions of harmful gases such as Carbon Monoxide (CO), Nitrogen Oxides (NOx), and Sulfur Oxides (SOx), which causes discomfort to the environment and road users around the work zone. The impact of such emissions should be considered while designing work zones or determining the number of days the roadway will be allowed to be closed partially or fully. This study develops a methodology to compute additional road user costs associated with such work zones. To achieve this goal, a) an extensive literature review is conducted, b) a framework to compute emission cost is developed, c) emission rates are computed for all counties (95) of the state of Tennessee, and d) a case study is conducted to demonstrate the use of the framework to estimate the additional impact of emission because of the work zone. For the case study conducted, the emission cost was computed to be $10,653.60 for the duration of the project. State DOTs can account for such road user costs while selecting contractors using A+B bidding. Accounting for such impact of emission will also indicate the agency's willingness to consider sustainability as a part of the business practices.

  • PDF

Variability and Changes of Wildfire Potential over East Asia from 1981 to 2020 (1981-2020년 기간 동아시아 지역 산불 발생 위험도의 변동성 및 변화 특성)

  • Lee, June-Yi;Lee, Doo Young
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • Wildfires, which occur sporadically and irregularly worldwide, are distinct natural disturbances in combustible vegetation areas, important parts of the global carbon cycle, and natural disasters that cause severe public emergencies. While many previous studies have investigated the variability and changes in wildfires globally based on fire emissions, burned areas, and fire weather indices, studies on East Asia are still limited. Here, we explore the characteristics of variability and changes in wildfire danger over East Asia by analyzing the fire weather index for the 40 years-1981-2020. The first empirical orthogonal function (EOF) mode of fire weather index variability represents an increasing trend in wildfire danger over most parts of East Asia over the last 40 years, accounting for 29% of the total variance. The major contributor is an increase in the surface temperature in East Asia associated with global warming and multidecadal ocean variations. The effect of temperature was slightly offset by the increase in soil moisture. The second EOF mode exhibits considerable interannual variability associated with the El Nino-Southern Oscillation, accounting for 17% of the total variance. The increase (decrease) in precipitation in East Asia during El Nino (La Nina) increases (decreases) soil moisture, which in turn reduces (increases) wildfire danger. This dominant soil moisture effect was slightly offset by the temperature increase (decrease) during El Nino (La Nina). Improving the understanding of variability and changes in wildfire danger will have important implications for reducing social, economic, and ecological losses associated with wildfire occurrences.

Identification of College Students' Understanding of the Thermodynamic Aspects Regarding the Dissolution of Solids and Gases (고체와 기체의 용해에 대한 대학생들의 열역학적 이해 조사)

  • Park, Jong-Yoon;Lee, Yun-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.2
    • /
    • pp.186-196
    • /
    • 2008
  • purpose of this study was to investigate college students' understanding of the thermodynamic aspects of the dissolution of solids and gases. The subjects were 34 juniors from the Seoul area who answered questionnaires composed of six items which asked the directions and reasons for the changes in enthalpy, entropy, and the solubility by temperature for the dissolution of solid sodium chloride and gaseous carbon dioxide into water. The results showed that the students understanding of the enthalpy change of dissolution was poor: many students answered that the dissolution of solids is an exothermic process because the dissolution occurs when the solute-solvent interaction is greater than the solute-solute interaction; the students also thought that the enthalpy should be reduced for spontaneous dissolution because the spontaneity depends on the enthalpy change only. For the entropy change, the students understanding was better and they explained it according to the meaning of disorder. For the temperature dependence of solubility, most students answered correctly regarding the direction, but only 25% of them explained the reason accounting for the enthalpy change. Many students who answered incorrectly on the enthalpy change could not explain the reason why.

Development of IoT-based data acquisition device (Gateway) for context-awareness of hospital facilities (병원 시설물의 상황 인지형 Light Things 제어를 위한 IoT기반 데이터 수집장치(Gateway) 개발)

  • Lee, Kack-Hee;Lee, Min-Woo;Cha, Jae-Sang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.4
    • /
    • pp.181-184
    • /
    • 2017
  • Korea is the world's top ten energy consumer, relying on foreign imports for 97% of its total energy. In 2007, energy imports amounted to US $ 95 billion, accounting for 26.6% of total imports. Thus, fundamental and long-term countermeasures against the same energy crisis It is a fact that is required. Despite the fact that the world is moving rapidly around the world in response to energy saving and low-carbon economic era, domestic movements are relatively slow. In this paper, we developed an IoT data collection device (Gateway) to control Light Things (lighting, signage, display, etc.) built in medium and large facilities under the assumption of hospital facilities, We propose the Light Things control algorithm and data acquisition (Gateway) development technology.

Microbial Community Analysis of 5-Stage Biological Nutrient Removal Process with Step Feed System

  • Park, Jong-Bok;Lee, Han-Woong;Lee, Soo-Youn;Lee, Jung-Ok;Bang, Iel-Soo;Park, Eui-So;Park, Doo-Hyun;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.929-935
    • /
    • 2002
  • The 5-stage biological nutrient removal (BNR) process with step feed system showed a very stable organic carbon and nutrient removal efficiency ($87\%\;COD\,;79\%\;nitrogen,\;and\;87\%$ phosphorus) for an operation period of 2 years. In each stage at the pilot plant, microbial communities, which are important in removing nitrogen and phosphorus, were investigated using fluorescence in-situ hybridization (FISH) and 165 rDNA characterization. All tanks of 5-stage sludge had a similar composition of bacterial communities. The totat cell numbers of each reactor were found to be around $2.36-2.83{\times}10^9$ cells/ml. About $56.5-62.0\%$ of total 4,6-diamidino-2-phenylindol (DAPI) cells were hybridized to the bacterial-specific probe EUB388. Members of ${\beta}$-proteobacteria were the most abundant proteobacterial group, accounting for up to $20.6-26.7\%$. The high G+C Gram-positive bacterial group and Cytophaga-Flexibacter cluster counts were also found to be relatively high. The beta subclass proteobacteria did not accumulate a large amount of polyphosphate. The proportion of phosphorus-accumulating organisms (PAOs) in the total population of the sludge was almost $50\%$ in anoxic-1 tank. The high G+C Gram-positive bacteria and Cytophaga-Flexibacter cluster indicate a key role of denitrifying phosphorus-accumulating organisms (dPAOs). Both groups might be correlated with some other subclass of proteobacteria for enhancing nitrogen and phosphorus removal in this process.

Notes on the biomass expansion factors of Quercus mongolica and Quercus variabilis forests in Korea

  • Li, Xiaodong;Son, Yeong-Mo;Lee, Kyeong-Hak;Kim, Rae-Hyun;Yi, Myong-Jong;Son, Yo-Whan
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.243-249
    • /
    • 2012
  • Biomass expansion factors, which convert timber volume (or dry weight) to biomass, are used for estimating the forest biomass and accounting for the carbon budget at a regional or national scale. We estimated the biomass conversion and expansion factors (BCEF), biomass expansion factors (BEF), root to shoot ratio (R), and ecosystem biomass expansion factor (EBEF) for Quercus mongolica Fisch. and Quercus variabilis Bl. forests based on publications in Korea. The mean BCEF, BEF, and R for Q. mongolica was 1.0383 Mg/$m^3$ (N = 27; standard deviation [SD], 0.5515), 1.3572 (N = 27; SD, 0.1355), and 0.2017 (N = 32; SD, 0.0447), respectively. The mean BCEF, BEF, and R for Q. variabilis was 0.7164 Mg/$m^3$ (N = 17; SD, 0.3232), 1.2464 (N = 17; SD, 0.0823), and 0.1660 (N = 8; SD, 0.0632), respectively. The mean EBEF, as a simple method for estimating the ground vegetation biomass, was 1.0216 (N = 7; SD, 0.0232) for Q. mongolica forest ecosystems, and 1.0496 (N = 8; SD, 0.0725) for Q. variabilis forest ecosystems. The biomass expansion factor values in this study may be better estimates of forest biomass in Q. mongolica or Q. variabilis forests of Korea compared with the default values given by the Intergovernmental Panel on Climate Change (IPCC).

The Estimation of Greenhouse Gas Reductions from Renewable Energy (Photovoltaic, Wind Power) : A Case Study in Korea (재생에너지(태양광, 풍력) 기술의 온실가스 감축산정: 국내를 대상으로)

  • Jung, Jaehyung;Kim, Kiman
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.729-737
    • /
    • 2020
  • This study estimates the greenhouse gas (GHG) emissions reduction resulting from photovoltaic and wind power technologies using a bottom-up approach for an indirect emission source (scope 2) in South Korea. To estimate GHG reductions from photovoltaic and wind power activities under standard operating conditions, methodologies are derived from the 2006 IPCC guidelines for national GHG inventories and the guidelines for local government greenhouse inventories of Korea published in 2016. Indirect emission factors for electricity are obtained from the 2011 Korea Power Exchange. The total annual GHG reduction from photovoltaic power (23,000 tons CO2eq) and wind power (30,000 tons CO2eq) was estimated to be 53,000 tons CO2eq. The estimation of individual GHGs showed that the largest component is carbon dioxide, accounting for up to 99% of the total GHG. The results of estimation from photovoltaic and wind power were 63.60% and 80.22% of installed capacity, respectively. The annual average GHG reductions from photovoltaic and wind power per year per unit installed capacity (MW) were estimated as 549 tons CO2eq/yr·MW and 647 tons CO2eq/yr·MW, respectively. Finally, the results showed that the level of GHG reduction per year per installed capacity of photovoltaic and wind power is 62% and 42% compared to the CDM project, respectively.

COD Fraction in Semi-Continuous Food Waste Acid Fermenter (반연속식 음식물쓰레기 산발효조에서 COD 분율)

  • Lee, Jae Woo;Park, Ki Young;Kim, Hee Jun;Chung, Tai Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.961-965
    • /
    • 2007
  • In this study, degradation of carbohydrates and composition of fermentative products were investigated in semi-continuous acid fermenter varying hydraulic retention time (HRT). Rice soup was used as a sole substrate for the acid fermentation. Solubilization efficiency of the substrate was higher than 70% for all HRT, however the gas conversion was ignorable implying that most of organic contents in the influent remained in the form of volatile fatty acids (VFAs) and ethanol after acid fermentation. The VFAs were the predominant product and the VFAs conversion increased as the HRT decreased. The VFAs conversion reached the maximum value at 12 hr HRT accounting for 70% of the influent COD. Similar to VFAs, ethanol conversion was increased with the decrease of HRT and the maximum ethanol conversion efficiency was 8% at the HRT of 12 hr. Composition of VFAs was markedly dependent on HRT. As HRT increased, the composition of acetic acid was increased as a product of acetogenesis from butyrate, valerate and ethanol. This study demonstrated that HRT affected acid fermentation of a carbohydrate containing organic wastes producing VFAs and ethanol which could be effectively used to compensate the lack of carbon in wastewater for biological nutrient removal.