Browse > Article
http://dx.doi.org/10.5467/JKESS.2022.43.1.30

Variability and Changes of Wildfire Potential over East Asia from 1981 to 2020  

Lee, June-Yi (Research Center for Climate Sciences, Pusan National University)
Lee, Doo Young (Research Center for Climate Sciences, Pusan National University)
Publication Information
Journal of the Korean earth science society / v.43, no.1, 2022 , pp. 30-40 More about this Journal
Abstract
Wildfires, which occur sporadically and irregularly worldwide, are distinct natural disturbances in combustible vegetation areas, important parts of the global carbon cycle, and natural disasters that cause severe public emergencies. While many previous studies have investigated the variability and changes in wildfires globally based on fire emissions, burned areas, and fire weather indices, studies on East Asia are still limited. Here, we explore the characteristics of variability and changes in wildfire danger over East Asia by analyzing the fire weather index for the 40 years-1981-2020. The first empirical orthogonal function (EOF) mode of fire weather index variability represents an increasing trend in wildfire danger over most parts of East Asia over the last 40 years, accounting for 29% of the total variance. The major contributor is an increase in the surface temperature in East Asia associated with global warming and multidecadal ocean variations. The effect of temperature was slightly offset by the increase in soil moisture. The second EOF mode exhibits considerable interannual variability associated with the El Nino-Southern Oscillation, accounting for 17% of the total variance. The increase (decrease) in precipitation in East Asia during El Nino (La Nina) increases (decreases) soil moisture, which in turn reduces (increases) wildfire danger. This dominant soil moisture effect was slightly offset by the temperature increase (decrease) during El Nino (La Nina). Improving the understanding of variability and changes in wildfire danger will have important implications for reducing social, economic, and ecological losses associated with wildfire occurrences.
Keywords
wildfire; fire weather index; climate variability; global warming; El Nino-Southern Oscillation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vitolo, C., Di Giuseppe, F., Krzeminski, B., and San- Miguel-Ayanz, J., 2019, A 1980-2018 global fire danger reanalysis dataset for the Canedian Fire Weather Indices. Sci Data 6, 190032. https://doi.org/10.1038/sdata.2019.32.   DOI
2 Giglio, L., Randerson, J. T., and van der Werf, G. R., 2013, Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research, 118, 317-328.
3 Le Page, Y.,Pereira, J. M. C., Trigo, R., da Camara, C., Oom, D., and Mota, B., 2008, Global fire activity patterns (1996-2006) and climate influence: An analysis using the World Fire Atlas. Atmospheric Chemistry and Physics, 8, 1911-1924.   DOI
4 Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., and Bowman, D. M. J. S., 2015, Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communication, 6, 7537.   DOI
5 Mariani, M., Fletcher, M. S., Holz, A., and Nyman, P., 2016, ENSO controls interannual fire activity in southeast Australia. Geophysical Research Letters, 43, 10891-10900.   DOI
6 Schulze, S. S., Fischer, E. C., Hamideh, S., and Mahmoud H., 2020, Wildfire impacts on schools and hospitals following the 2018 California Camp Fire. Natural Hazards, 104, 901-925.   DOI
7 Skinner, W. R., Shabbar, A., Flannigan, M. D., and Logan, K., 2006, Large forest fires in Canada and the relationship to global sea surface temperatures. Journal of Geophysical Research Atmosphere, 111, D14106.   DOI
8 van der Velde, I. R., van der Werf, G. R., Houweling, S., Maasakkers, J. D., Borsdorff, T., Landgraf, J., Tol P., van Kempen, T. A., van Hees, R., Hoogeveen, R., Veefkind, J. P., and Aben, I., 2021, Vast CO2 release from Australian fires in 2019-2020 constrained by satellite. Nature, 597, 366-369.   DOI
9 Jia, G., Shevliakova, E., Artaxo, P., De Noblet-Ducoudre, N., Houghton, R., House, J., Kitajima, K.,Lennard, C., Popp, A., Sirin, A., Sukumar, R., and Verchot, L., 2019: Land-climate interactions. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [Shukla. P. R., Skea, J., Buendia, E. C., Masson-Delmotte, V., Portner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Pereira, J. P., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J., (eds.)]. In press.
10 Archibald, S., Roy, D. P., van Wilgen, B. W., and Scholes, R. J., 2009, What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology, 15, 613-630.   DOI
11 Field, R. D., Spessa, A. C., Aziz, N. A., Camia, A., Cantin, A., Carr, R., de Groot, W. J., Dowdy, A. J., Flannigan, M. D., Manomalphiboon, K., Pappenberger, F., Tanpipat, V., and Wang, X., 2015, Development of a Global Fire Weather Database. Natural Hazards and Earth System Sciences, 15, 1407-1423.   DOI
12 Burke, M., Driscoll, A., Heft-Neal, S., Xue, J., Burney, J., and Wara, M., 2021, The changing risk and burden of wildfire in the United States. Proceedings of the National Academy of Sciences of the United States of America, 118, e2011048118.   DOI
13 Chen, Y., Randerson, J. T., Morton, D. C., DeFries, R. S., Collatz, G. J., Kasibhatla, P. S., Giglio, L., Jin, Y., and Marlier, M. E. 2011: Forecasting fire season severity in South America using sea surface temperature anomalies. Science, 334, 787-791.   DOI
14 Chikamoto, Y., Timmermann, A., Widlansky, M. J., Balmaseda, M. A., and Stott, L., 2017, Multi-year predictability of climate, drought, and wildfire in southwestern North America. Scientific Reports, 7, 6568.   DOI
15 Korea Forest Service, 2021, 2021 K-Wildfire Prevention Measures. Korea Forest Service, 43 p. (in Korean)
16 Bowman, D. M. J. S., Balch, J. K, Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., and Pyne, S. J., 2009, Fire in the Earth system. Science, 324, 481-484.   DOI
17 Diffenbaugh, N. S., Knoings, A. G., and Field, C. B., 2021, Atmospheric variability contributes to increasing wildfire weather but not as much as global warming. Proceedings of the National Academy of Sciences of the United States of America, 118, e20117876118.
18 Hersbach, H., Bell, B., Berrisford, P., et al., 2020, The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049.   DOI
19 van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S., 2017, Global fire emissions estimates during 1997-2016. Earth System Science Data, 9, 697-720.   DOI
20 Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E., and Hall, A., 2021, Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proceedings of the National Academy of Sciences of the United States of America, 118, e2111875118.   DOI
21 Pellegrini, A. F., Ahlstrom, A., Hobbie, S. E., Reich, P. B., Nieradzik, L. P., Staver, A. C., Scharenbroch, B. C., Jumpponen, A., Anderegg, W. R. L., Randerson, J. T., and Jackson, R. B., 2017, Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 553, 194-198.   DOI