• Title/Summary/Keyword: carbon/nitrogen ratio

Search Result 581, Processing Time 0.021 seconds

Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion

  • Choi, Yongjun;Ryu, Jeongwon;Lee, Sang Rak
    • Journal of Animal Science and Technology
    • /
    • v.62 no.1
    • /
    • pp.74-83
    • /
    • 2020
  • Organic waste used as a feedstock in the anaerobic digestion (AD), it includes carbon and nitrogen. Carbon and nitrogen have an effect on the various digestive characteristics during AD, however, the study is rare about those of the interaction. This study investigates the influence of carbon type and carbon to nitrogens (C/N ratios) on the AD characteristics of organic waste. Experimental treatments involved a combination of three carbon types with three C/N ratios. The AD tests were carried out using a 125-mL serum bottle at a constant temperature of 37℃ and moisture 95% for 18 days. Degradation pattern shows the difference among three-carbon treatments, the starch group was faster than other groups. Maximum methane production date was similar between starch (9.96 ± 0.05 day) and xylan group (10.0 ± 0.52 day), those of the cellulose group (14.6 ± 1.80 day) was slower than other groups (p < 0.05). The lag phase was only affected by the carbon type (p < 0.05). Ammonia nitrogen was mainly affected by nitrogen concentration regardless of carbon type (p < 0.05). This study showed that xylan is useful as feedstock in order to decrease the lag phase, and it showed that ammonia was independently affected by the nitrogen concentration.

Effect of Carbon Source and Carbon to Nitrogen Ratio on Carotenogenesis of Rhodotorula glutinis

  • Nam, Hee-Sop
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.75-78
    • /
    • 1991
  • The carotenoid biosynthesis of a red oleaginous yeast, Rhodotorula glutinis was significantly changed when the yeast was grown on different carbon substrates. The highest carotenoid production was obtained on culture medium containing glucose when the carbon to nitrogen ratio (C/N ratio) was adjusted to 25.7. Galactose stimulated the biosynthetic rate of torularhodin, a xanthophyll component of the yeast. With decreasing C/N ratio of the medium, significant changes of $\gamma$-carotene and torularhodin were observed such that increase in the torularhodin concentration was nearly equal to the decrease in $\gamma$-carotene. It was speculated that the nature of carbon substrate affected the metabolic rate of the cell, and accompanied by the different pattern of carotenoid accumulation in the cell.

  • PDF

Morphological Diversity of Mortierella alpina: Effect of Consumed Carbon to Nitrogen Ratio in Flask Culture

  • Park, Enoch Y.;Yasuhisa Koike;Cai, Hong-Jie;Kenichi Higashiyama;Shigeaki Fujikawa
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.161-166
    • /
    • 2001
  • The influence of the consumed carbon to nitrogen (C/N) ratio on mycelial morphology was investigated in cultures of Mortierella alpina using shake flasks. The consumed C/N ratio was varied from 5 to 32 under the condition that the total initial amount of the carbon and nitrogen sources was 50g/L. The whole mycelia and filamentous mycelia exhibited no relationship with the consumed C/N ratio below a consumed C/N ratio of 20 in the presence of either excess carbon or excess nitrogen. However, when the consumed C/N ratio increased higher than 20, the mycelial sizes increased in proportion to the consumed C/N ratio. However, the area ratio of filamentous mycelia to total mycelia was found to be independent of the consumed C/N ratio, and remained constant at 0.82. In the case of a fixed consumed C/N ratio of 20, the whole mycelia and filamentous mycelia increased in proportion to the degree of the medium strength, yet the area ratio of filamentous mycelia to total mycelia remained unchanged at 0.76. Accordingly, these results show that fungal morphology and mycelial size are both affected by the ratio of carbon to nitrogen. The findings of the current study will be helpful in obtaining the efficient production of useful bioproducts from fungal cultures.

  • PDF

Nitrogen Removal from Wastewaters by Microalgae Without Consuming Organic Carbon Sources

  • Lee, Kwang-Yong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.979-985
    • /
    • 2002
  • The possibility of microalgal nitrogen treatment was tested in wastewaters with a low carbon/nitrogen (C/N) ratio. Chlorella kessleri was cultured in the two different artificial wastewaters with nitrate as a nitrogen source: one contained glucose for an organic carbon source and the other without organic carbon sources. The growth rates of the two cultures were almost identical when the aeration rate was over 1 vvm. These results suggest that microalgae could successfully remove nitrogen from wastewater, as far as the mass transfer of $CO_2$, was not limited. Nitrate was successfully reduced to below 2 mg $NO_3^-$-N/ml from the initial nitrate concentration of 140 mg $NO_3^-$-N/ml in 10 days, even in the wastewater with no organic carbon source. Similar results were obtained when ammonium was used as the sole nitrogen source instead of nitrate. Higher concentrations of nitrogen of 140, 280, 560 and 1,400 mg/ml were also tested and similar amounts of nitrogen were removed by algal cultures without showing any substrate inhibition.

Plasma Characterization of Facing Target Sputter System for Carbon Nitride Film Deposition

  • Lee, Ji-Gong;Lee, Sung-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.98-103
    • /
    • 2004
  • The plasma properties in the facing target sputtering system during carbon nitride film deposition have been investigated. The ionized nitrogen species of the deposited films increased with increasing discharge current and were independent of the nitrogen pressure. The nitrogen content in the films did not vary significantly with the variation of nitrogen gas. The electron temperature was high close to that in the inter-cathode region, reduced as the electrons moved away from the most intense region of magnetic confinement and increased again outside this region. Calculations based on the film composition showed that the ion to carbon atom ratio at the substrate was about 50 and that the ratio between the ionized and neutral nitrogen molecules was about 0.25.

The Origin and Biogeochemistry of Organic Matter in Surface Sediments of Lake Shihwa and Lake Hwaong

  • Won, Eun-Ji;Cho, Hyen-Goo;Shin, Kyung-Hoon
    • Ocean Science Journal
    • /
    • v.42 no.4
    • /
    • pp.223-230
    • /
    • 2007
  • To understand the origin and biogeochemistry of the organic matter in surface sediments of Lake Shihwa and Lake Hwaong, organic nitrogen, inorganic nitrogen, labile organic carbon, and residual organic carbon contents as well as stable isotope ratios for carbon and nitrogen were determined by KOBr-KOH treatment. Ratios of organic carbon to organic nitrogen $(C_{org}/N_{org})$ (mean = 24) were much higher than ratios of organic carbon to total nitrogen $(C_{org}/N_{tot})$ (mean= 12), indicating the presence of significant amounts of inorganic nitrogen in the surface sediments of both lakes. Stable isotope ratios for organic nitrogen were, on average, $5.2\%_{\circ}$ heavier than ratios of inorganic nitrogen in Lake Shihwa, but those same ratios were comparable in Lake Hwaong. This might be due to differences in the origin or the degree of degradation of sedimentary organic matter between the two lakes. In addition, stable isotope ratios for labile organic carbon were, on average, $1.4\%_{\circ}$ heavier than those for residual organic carbon, reflecting the preferential oxidation of $^{13}C$-enriched organic matter. The present study demonstrates that KOBr-KOH treatment of sedimentary organic matter can provide valuable information for understanding the origin and degradation state of organic matter in marine and brackish sediments. This also suggests that the ratio of $(C_{org}/N_{org})$ and stable isotope ratios for organic nitrogen can be used as indexes of the degree of degradation of organic matter.

Effect of microporosity on nitrogen-doped microporous carbons for electrode of supercapacitor

  • Cho, Eun-A;Lee, Seul-Yi;Park, Soo-Jin
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.210-213
    • /
    • 2014
  • Nitrogen-doped microporous carbons were prepared using a polyvinylidene fluoride/melamine mixture. The electrochemical performance of the nitrogen-doped microporous carbons after being subjected to different carbonization conditions was investigated. The nitrogen to carbon ratio and specific surface area decreased with an increase in the carbonization temperature. However, the maximum specific capacitance of 208 F/g was obtained at a carbonization temperature of $800^{\circ}C$ because it produced the highest microporosity.

Selective Nitrogen Doping of Carbon Nanotubes Through Different Mechanical Mixing Methods with Melamine (멜라민과의 기계적 혼합을 통한 탄소나노튜브의 선택적 질소 도핑)

  • Seon-Yeon Kim;Taewoo Kim;Seung-Yeol Jeon
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.408-415
    • /
    • 2023
  • The formation of bonding configurations such as pyridinic-N, pyrrolic-N, and graphitic-N by nitrogen doping plays a crucial role in imparting distinct physical properties to carbon nanomaterials. In this study, we propose a simple and cost-effective approach to regulate nitrogen dopant configurations in carbon nanotubes (CNTs) by mixing melamine as a dopant source. We employed three distinct mechanical mixing techniques, namely magnetic stirring, bath sonication and tip sonication. The higher the ratio of melamine to CNT, the higher the ratio of Pyrrolic-N, and when mixed through stirring, the highest ratio of Pyridinic-N was shown. The facile method proposed in this study, which can easily form various types of nitrogen dopants in carbon nanotubes, is expected to facilitate the application of nitrogen-doped carbon nanomaterials.

Effects on the Stability of Aerobic Granular Sludge (AGS) at Different Carbon/Nitrogen Ratio (C/N비 변화가 호기성 그래뉼 슬러지의 안정성에 미치는 영향)

  • Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.9
    • /
    • pp.719-727
    • /
    • 2019
  • In this study, the effect on the stability of Aerobic Granular Sludge (AGS) with different Carbon/Nitrogen (C/N) ratios was investigated. The C/N ratios were controlled to 10.0, 7.5, 5.0, and 2.5 using the sequencing batch reactor, and the results showed that the removal efficiency of organic matter and total nitrogen decreased simultaneously with the decrease of C/N ratio. The removal efficiency of organic matter and total nitrogen at C/N ratio of 2.5 was 70.7% and 52.3% respectively. In addition, the AGS/mixed liquor suspended solids (MLSS) ratio showed a tendency to decrease from 85.7% to 73.7%, while the sludge volume index showed a tendency to increase from 82 mL/g to 102 mL/g as the C/N ratio decreased. At the same time, the apparent deviation of polysaccharide (PS) content in extracellular polymeric substances was observed, and polysaccharides/protein (PS/PN) ratio decreased from 0.62 to 0.31 as the C/N ratio decreased. Optical microscope observations showed that the reduction in C/N ratio caused the growth of filamentous bacteria and significantly affected the stability of AGS.

Automatic Addition Control of the External Carbon Source by the Measurement of ORP in Biological Nitrogen Removal Process (생물학적 질소 제거공정에서 ORP 측정을 통한 외부탄소원의 자동 주입 제어)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.383-390
    • /
    • 2012
  • For the cost-effective biological nitrogen removal (BNR) process whose characteristics of influent have low COD/N ratios, the automatic control system for the addition of external carbon based on oxidation-reduction potential (ORP) data in an anoxic reactor has been developed. In this study, it was carried out with a pilot-scale Bardenpho process which was consisted of anoxic 1, aerobic 1, aerobic 2, anoxic 2, aerobic 3 tank and clarifier. Firstly, the correlation coefficient ($R^2$) of the dosage of external carbon source and ORP value was about 0.97. Consequently, the automatic control system using ORP showed that the dosage of external carbon source was decreased by about 20% compared with a stable dosage of 75 mg/L based on the COD/N ratio of the anoxic influent.