Browse > Article
http://dx.doi.org/10.5322/JESI.2019.28.9.719

Effects on the Stability of Aerobic Granular Sludge (AGS) at Different Carbon/Nitrogen Ratio  

Kim, Hyun-Gu (BlueBank Co., Ltd., Business incubator center, Myongji University)
Ahn, Dae-Hee (BlueBank Co., Ltd., Business incubator center, Myongji University)
Publication Information
Journal of Environmental Science International / v.28, no.9, 2019 , pp. 719-727 More about this Journal
Abstract
In this study, the effect on the stability of Aerobic Granular Sludge (AGS) with different Carbon/Nitrogen (C/N) ratios was investigated. The C/N ratios were controlled to 10.0, 7.5, 5.0, and 2.5 using the sequencing batch reactor, and the results showed that the removal efficiency of organic matter and total nitrogen decreased simultaneously with the decrease of C/N ratio. The removal efficiency of organic matter and total nitrogen at C/N ratio of 2.5 was 70.7% and 52.3% respectively. In addition, the AGS/mixed liquor suspended solids (MLSS) ratio showed a tendency to decrease from 85.7% to 73.7%, while the sludge volume index showed a tendency to increase from 82 mL/g to 102 mL/g as the C/N ratio decreased. At the same time, the apparent deviation of polysaccharide (PS) content in extracellular polymeric substances was observed, and polysaccharides/protein (PS/PN) ratio decreased from 0.62 to 0.31 as the C/N ratio decreased. Optical microscope observations showed that the reduction in C/N ratio caused the growth of filamentous bacteria and significantly affected the stability of AGS.
Keywords
Aerobic granular sludge; C/N ratio; Organic matter; Nitrogen; Extracellular polymeric substances;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ni, B. J., Xie, W. M., Liu, S. G., Yu, H. Q., Wang, Y. Z., Wang, G., Dai, X. L., 2009, Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater, Water Res., 43(3), 751-761.   DOI
2 Pijuan, M., Werner, U., Yuan, Z., 2011, Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules, Water Res., 45(16), 5075-5083.   DOI
3 Ren, Y., Ferraz, F., Lashkarizadeh, M., Yuan, Q., 2017, Comparing young landfill leachate treatment efficiency and process stability using aerobic granular sludge and suspended growth activated sludge, J. Water Proc. Eng., 17, 161-167.   DOI
4 Sheng, G. P., Yu, H. Q., Li, X. Y., 2010, Extracellular Polymeric Substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28, 882-894.   DOI
5 Su, K. Z., Ni, B. J., Yu, H. Q., 2013, Modeling and optimization of granulation process of activated sludge in sequencing batch reactors, Biotechnol. Bioeng., 110(5), 1312-1322.   DOI
6 Szabo, E., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., 2016, Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time, Water, 8(5), 172.   DOI
7 Tay, J. H., Liu, Q. S., Liu, Y., 2001, Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor, J. Appl. Microbiol., 91, 168-175.   DOI
8 Vashi, H., Iorhemen, O. T., Tay, J. H., 2018, Degradation of industrial tannin and lignin from pulp mill effluent by aerobic granular sludge technology, J. Water Proc. Eng., 26, 38-45.   DOI
9 Wang, S. G., Liu, X. W., Gong, W. X., Gao, B. Y., Zhang, D. H., Yu, H. Q., 2007, Aerobic granulation with brewery wastewater in a sequencing batch reactor, Bioresour. Technol., 98, 2142-2147.   DOI
10 Corsino, S. F., di Biase, A., Devlin, T. R., Munz, G., Torregrossa, M., Oleszkiewicz, J. A., 2017, Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater, Bioresour. Technol., 226, 150-157.   DOI
11 Wang, Z., Gao, M., She, Z., Wang, S., Jin, C., Zhao, Y., Yang, S., Guo, L., 2015, Effects of salinity on performance, extracellular polymeric substances and microbial community of an aerobic granular sequencing batch reactor, Sep. Purif. Technol., 144, 223-231.   DOI
12 Wei, D., Wang, Y., Wang, X., Li, M., Han, F., Ju, L., Zhang, G., Shi, L., Li, K., Wang, B., Du, B., Wei, Q., 2015, Toxicity assessment of 4-chlorophenol to aerobic granular sludge and its interaction with extracellular polymeric substances, J. Hazard Mater., 289, 101-107.   DOI
13 Wu, L., Peng, C. Y., Peng, Y. Z., Li, L. Y., Wang, S. Y., Ma, Y., 2012, Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift, J. Environ. Sci., 24(2), 234-241.   DOI
14 Yang, S. F., Tay, J. H., Liu, Y., 2005, Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules, J. Environ. Eng., 131(1), 86-92.   DOI
15 Yuan, Q., Gong, H., Xi, H., Xu, H., Zhengyu, J., Ali, N., Wang, K., 2019, Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate, J. Environ. Sci., 84, 144-154.   DOI
16 Zhang, Z., Cao, R., Jin, L., Zhu, W., Ji, Y., Xu, X., Zhu, L., 2019, The regulation of N-acyl-homoserine lactones (AHLs)-based quorum sensing on EPS secretion via ATP synthetic for the stability of aerobic granular sludge, Sci. Total Environ., 673, 89-91.
17 Zhu, L., Lv, M. L., Dai, X., Yu, Y. W., Qi, H. Y., Xu, X. Y., 2012, Role and significance of extracellular polymeric substances on the property of aerobic granule, Bioresour. Technol., 107, 46-54.   DOI
18 Guo, W. S., Ngo, H. H., Li, J. X., 2012, A Mini-review on membrane fouling, Bioresour. Technol., 122, 27-34.   DOI
19 De Sousa Rollemberg, S. L., Barros, A. R. M., Firmino, P. I. M., dos Santos, A. B., 2018, Aerobic granular sludge: Cultivation parameters and removal mechanisms, Bioresour. Technol., 270, 678-688.   DOI
20 Eom, H. K., Kim, S. C., 2018, A Study on the denitrification and microbial community characteristics by the change of C/N ratio of molasses and nitrate nitrogen, Korean J. Microbiol., 54(2), 105-112.   DOI
21 He, Q., Chen, L., Zhang, S., Chen, R., Wang, H., 2019, Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment, Bioresour. Technol., 271, 48-58.   DOI
22 He, Q., Chen, L., Zhang, S., Wang, L., Liang, J., Xia, W., Wang, H., Zhou, J., 2018, Simultaneous nitrification, denitrification and phosphorus removal in aerobic granular sequencing batch reactors with high aeration intensity: Impact of aeration time, Bioresour. Technol., 263, 214-222.   DOI
23 Herbert, D., Philipps, P. J., Strange, R. E., 1971, Carbohydrate analysis, Methods Enzymol. B., 5, 265-277.
24 Kishida, N., Tsuneda, J., Kim, J. H., Sudo, R., 2009, Simultaneous nitrogen phosphorus removal from high-strength industrial wastewater using aerobic granular sludge, J. Environ. Eng., 135(3), 153-158.   DOI
25 Kocaturk, I., Erguder, T. H., 2016, Influent COD/TAN ratio affects the carbon and nitrogen removal efficiency and stability of aerobic granules, Ecol. Eng., 90, 12-24.   DOI
26 Liu, Y. Q., Liu, Y., Tay, J. H., 2004, The effects of extracellular polymeric substances on the formation and stability of biogranules, Appl. Microbiol. Biotechnol., 65, 143-148.   DOI
27 Liu, H., Fang, H. H. P., 2002, Extraction of Extracellular polymeric Substances (EPS) of sludges, J. Biotechnol., 95, 249-256.   DOI
28 Liu, J., Li, J., Xie, K., Sellarmuthu, B., 2019, Role of adding dried sludge micropowder in aerobic granular sludge reactor with extended filamentous bacteria, Bioresour. Technol. Rep., 5, 51-58.   DOI
29 Liu, Y., Liu, Q. S., 2006, Research and implementation of 3D assembly animate based on B/S structure, Biotechnol. Adv., 24, 115-117.   DOI
30 Liu, Y. Q., Moy, B. Y. P., Tay, J. H., 2007, COD removal and nitrification of low-strength domestic wastewaterin aerobic granular sludge sequencing batch reactors, Enzyme Microb. Technol., 42, 23-28.   DOI
31 Long, B., Xuan, X., Yang, C., Zhang, L., Cheng, Y., Wang, J., 2019, Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control, Chemosphere, 225, 460-469.   DOI
32 Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275.   DOI
33 Luo, J., Hao, T., Wei, L., Mackey, H. R., Lin, Z., Chen, G. H., 2014, Impact of influent COD/N ratio on disintegration of aerobic granular sludge, Water Res., 62, 127-135.   DOI
34 Campo, R., Corsino, S. F., Torregrossa, M., Bella, G. D., 2018, The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity, Sep. Purif. Technol., 195, 12-20.   DOI
35 American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA.
36 Arrojo, B., Mosquera-Corral, A., Garrido, J. M., Mendez, R., 2004, Aerobic granulation with industrial wastewater in sequencing batch reactors, Water Res., 38(14-15), 3389-3399.   DOI
37 Martins, A. M. P., Pagilla, K., Heijnen, J. J., van Loosdrecht, M. C. M., 2004, Filamentous bulking sludge a critical review, Water Res., 38(4), 793-817.   DOI
38 Mo, W. J., Kim, H. Y., Choi, H. N., 2019, The operation characteristics of advanced sewage treatment process using aerobic granular gludge in pilot plant, J. Korean Soc. Environ. Eng., 41(2), 61-68.   DOI
39 Cai, W., Jin, M., Zhao, Z., Lei, Z., Zhang, Z., Adachi, Y., Lee, D. J., 2018, Influence of ferrous iron dosing strategy on aerobic granulation of activated sludge and bioavailability of phosphorus accumulated in granules, Bioresour. Technol. Rep., 2, 7-14.   DOI
40 Caluwe, M., Dobbeleers, T., D'aes, J., Miele, S., Akkermans, V., Daens, D., Geuens, L., Kiekens, F., Blust, R., Dries, J., 2017, Formation of aerobic granular sludge during the treatment of petrochemical waste-water, Bioresour. Technol., 238, 559-567.   DOI
41 Carrera, P., Campo, R., Mendez, R., Bella, G. D., Campos, J. L., Mosquera-Corral, A., Val del Rio, A., 2019, Does the feeding strategy enhance the aerobic granular sludge stability treating saline effluents?, Chemosphere, 226, 865-873.   DOI
42 Choi, S. W., 2011, Bio-kinetic and design analysis of a sequencing batch reactor by aerobic granular sludge, J. Korean Soc. Environ. Eng., 33(4), 275-280.   DOI