DOI QR코드

DOI QR Code

Effects on the Stability of Aerobic Granular Sludge (AGS) at Different Carbon/Nitrogen Ratio

C/N비 변화가 호기성 그래뉼 슬러지의 안정성에 미치는 영향

  • Kim, Hyun-Gu (BlueBank Co., Ltd., Business incubator center, Myongji University) ;
  • Ahn, Dae-Hee (BlueBank Co., Ltd., Business incubator center, Myongji University)
  • Received : 2019.06.17
  • Accepted : 2019.07.24
  • Published : 2019.09.30

Abstract

In this study, the effect on the stability of Aerobic Granular Sludge (AGS) with different Carbon/Nitrogen (C/N) ratios was investigated. The C/N ratios were controlled to 10.0, 7.5, 5.0, and 2.5 using the sequencing batch reactor, and the results showed that the removal efficiency of organic matter and total nitrogen decreased simultaneously with the decrease of C/N ratio. The removal efficiency of organic matter and total nitrogen at C/N ratio of 2.5 was 70.7% and 52.3% respectively. In addition, the AGS/mixed liquor suspended solids (MLSS) ratio showed a tendency to decrease from 85.7% to 73.7%, while the sludge volume index showed a tendency to increase from 82 mL/g to 102 mL/g as the C/N ratio decreased. At the same time, the apparent deviation of polysaccharide (PS) content in extracellular polymeric substances was observed, and polysaccharides/protein (PS/PN) ratio decreased from 0.62 to 0.31 as the C/N ratio decreased. Optical microscope observations showed that the reduction in C/N ratio caused the growth of filamentous bacteria and significantly affected the stability of AGS.

Keywords

References

  1. American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA.
  2. Arrojo, B., Mosquera-Corral, A., Garrido, J. M., Mendez, R., 2004, Aerobic granulation with industrial wastewater in sequencing batch reactors, Water Res., 38(14-15), 3389-3399. https://doi.org/10.1016/j.watres.2004.05.002
  3. Cai, W., Jin, M., Zhao, Z., Lei, Z., Zhang, Z., Adachi, Y., Lee, D. J., 2018, Influence of ferrous iron dosing strategy on aerobic granulation of activated sludge and bioavailability of phosphorus accumulated in granules, Bioresour. Technol. Rep., 2, 7-14. https://doi.org/10.1016/j.biteb.2018.03.004
  4. Caluwe, M., Dobbeleers, T., D'aes, J., Miele, S., Akkermans, V., Daens, D., Geuens, L., Kiekens, F., Blust, R., Dries, J., 2017, Formation of aerobic granular sludge during the treatment of petrochemical waste-water, Bioresour. Technol., 238, 559-567. https://doi.org/10.1016/j.biortech.2017.04.068
  5. Campo, R., Corsino, S. F., Torregrossa, M., Bella, G. D., 2018, The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity, Sep. Purif. Technol., 195, 12-20. https://doi.org/10.1016/j.seppur.2017.11.074
  6. Carrera, P., Campo, R., Mendez, R., Bella, G. D., Campos, J. L., Mosquera-Corral, A., Val del Rio, A., 2019, Does the feeding strategy enhance the aerobic granular sludge stability treating saline effluents?, Chemosphere, 226, 865-873. https://doi.org/10.1016/j.chemosphere.2019.03.127
  7. Choi, S. W., 2011, Bio-kinetic and design analysis of a sequencing batch reactor by aerobic granular sludge, J. Korean Soc. Environ. Eng., 33(4), 275-280. https://doi.org/10.4491/KSEE.2011.33.4.275
  8. Corsino, S. F., di Biase, A., Devlin, T. R., Munz, G., Torregrossa, M., Oleszkiewicz, J. A., 2017, Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater, Bioresour. Technol., 226, 150-157. https://doi.org/10.1016/j.biortech.2016.12.026
  9. De Sousa Rollemberg, S. L., Barros, A. R. M., Firmino, P. I. M., dos Santos, A. B., 2018, Aerobic granular sludge: Cultivation parameters and removal mechanisms, Bioresour. Technol., 270, 678-688. https://doi.org/10.1016/j.biortech.2018.08.130
  10. Eom, H. K., Kim, S. C., 2018, A Study on the denitrification and microbial community characteristics by the change of C/N ratio of molasses and nitrate nitrogen, Korean J. Microbiol., 54(2), 105-112. https://doi.org/10.7845/KJM.2018.8013
  11. Guo, W. S., Ngo, H. H., Li, J. X., 2012, A Mini-review on membrane fouling, Bioresour. Technol., 122, 27-34. https://doi.org/10.1016/j.biortech.2012.04.089
  12. He, Q., Chen, L., Zhang, S., Chen, R., Wang, H., 2019, Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment, Bioresour. Technol., 271, 48-58. https://doi.org/10.1016/j.biortech.2018.09.102
  13. He, Q., Chen, L., Zhang, S., Wang, L., Liang, J., Xia, W., Wang, H., Zhou, J., 2018, Simultaneous nitrification, denitrification and phosphorus removal in aerobic granular sequencing batch reactors with high aeration intensity: Impact of aeration time, Bioresour. Technol., 263, 214-222. https://doi.org/10.1016/j.biortech.2018.05.007
  14. Herbert, D., Philipps, P. J., Strange, R. E., 1971, Carbohydrate analysis, Methods Enzymol. B., 5, 265-277.
  15. Kishida, N., Tsuneda, J., Kim, J. H., Sudo, R., 2009, Simultaneous nitrogen phosphorus removal from high-strength industrial wastewater using aerobic granular sludge, J. Environ. Eng., 135(3), 153-158. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:3(153)
  16. Kocaturk, I., Erguder, T. H., 2016, Influent COD/TAN ratio affects the carbon and nitrogen removal efficiency and stability of aerobic granules, Ecol. Eng., 90, 12-24. https://doi.org/10.1016/j.ecoleng.2016.01.077
  17. Liu, H., Fang, H. H. P., 2002, Extraction of Extracellular polymeric Substances (EPS) of sludges, J. Biotechnol., 95, 249-256. https://doi.org/10.1016/S0168-1656(02)00025-1
  18. Liu, J., Li, J., Xie, K., Sellarmuthu, B., 2019, Role of adding dried sludge micropowder in aerobic granular sludge reactor with extended filamentous bacteria, Bioresour. Technol. Rep., 5, 51-58. https://doi.org/10.1016/j.biteb.2018.12.002
  19. Liu, Y., Liu, Q. S., 2006, Research and implementation of 3D assembly animate based on B/S structure, Biotechnol. Adv., 24, 115-117. https://doi.org/10.1016/j.biotechadv.2005.08.001
  20. Liu, Y. Q., Liu, Y., Tay, J. H., 2004, The effects of extracellular polymeric substances on the formation and stability of biogranules, Appl. Microbiol. Biotechnol., 65, 143-148. https://doi.org/10.1007/s00253-004-1657-8
  21. Liu, Y. Q., Moy, B. Y. P., Tay, J. H., 2007, COD removal and nitrification of low-strength domestic wastewaterin aerobic granular sludge sequencing batch reactors, Enzyme Microb. Technol., 42, 23-28. https://doi.org/10.1016/j.enzmictec.2007.07.020
  22. Long, B., Xuan, X., Yang, C., Zhang, L., Cheng, Y., Wang, J., 2019, Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control, Chemosphere, 225, 460-469. https://doi.org/10.1016/j.chemosphere.2019.03.048
  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  24. Luo, J., Hao, T., Wei, L., Mackey, H. R., Lin, Z., Chen, G. H., 2014, Impact of influent COD/N ratio on disintegration of aerobic granular sludge, Water Res., 62, 127-135. https://doi.org/10.1016/j.watres.2014.05.037
  25. Martins, A. M. P., Pagilla, K., Heijnen, J. J., van Loosdrecht, M. C. M., 2004, Filamentous bulking sludge a critical review, Water Res., 38(4), 793-817. https://doi.org/10.1016/j.watres.2003.11.005
  26. Mo, W. J., Kim, H. Y., Choi, H. N., 2019, The operation characteristics of advanced sewage treatment process using aerobic granular gludge in pilot plant, J. Korean Soc. Environ. Eng., 41(2), 61-68. https://doi.org/10.4491/KSEE.2019.41.2.61
  27. Ni, B. J., Xie, W. M., Liu, S. G., Yu, H. Q., Wang, Y. Z., Wang, G., Dai, X. L., 2009, Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater, Water Res., 43(3), 751-761. https://doi.org/10.1016/j.watres.2008.11.009
  28. Pijuan, M., Werner, U., Yuan, Z., 2011, Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules, Water Res., 45(16), 5075-5083. https://doi.org/10.1016/j.watres.2011.07.009
  29. Ren, Y., Ferraz, F., Lashkarizadeh, M., Yuan, Q., 2017, Comparing young landfill leachate treatment efficiency and process stability using aerobic granular sludge and suspended growth activated sludge, J. Water Proc. Eng., 17, 161-167. https://doi.org/10.1016/j.jwpe.2017.04.006
  30. Sheng, G. P., Yu, H. Q., Li, X. Y., 2010, Extracellular Polymeric Substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28, 882-894. https://doi.org/10.1016/j.biotechadv.2010.08.001
  31. Su, K. Z., Ni, B. J., Yu, H. Q., 2013, Modeling and optimization of granulation process of activated sludge in sequencing batch reactors, Biotechnol. Bioeng., 110(5), 1312-1322. https://doi.org/10.1002/bit.24812
  32. Szabo, E., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., 2016, Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time, Water, 8(5), 172. https://doi.org/10.3390/w8050172
  33. Tay, J. H., Liu, Q. S., Liu, Y., 2001, Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor, J. Appl. Microbiol., 91, 168-175. https://doi.org/10.1046/j.1365-2672.2001.01374.x
  34. Vashi, H., Iorhemen, O. T., Tay, J. H., 2018, Degradation of industrial tannin and lignin from pulp mill effluent by aerobic granular sludge technology, J. Water Proc. Eng., 26, 38-45. https://doi.org/10.1016/j.jwpe.2018.09.002
  35. Wang, S. G., Liu, X. W., Gong, W. X., Gao, B. Y., Zhang, D. H., Yu, H. Q., 2007, Aerobic granulation with brewery wastewater in a sequencing batch reactor, Bioresour. Technol., 98, 2142-2147. https://doi.org/10.1016/j.biortech.2006.08.018
  36. Wang, Z., Gao, M., She, Z., Wang, S., Jin, C., Zhao, Y., Yang, S., Guo, L., 2015, Effects of salinity on performance, extracellular polymeric substances and microbial community of an aerobic granular sequencing batch reactor, Sep. Purif. Technol., 144, 223-231. https://doi.org/10.1016/j.seppur.2015.02.042
  37. Wei, D., Wang, Y., Wang, X., Li, M., Han, F., Ju, L., Zhang, G., Shi, L., Li, K., Wang, B., Du, B., Wei, Q., 2015, Toxicity assessment of 4-chlorophenol to aerobic granular sludge and its interaction with extracellular polymeric substances, J. Hazard Mater., 289, 101-107. https://doi.org/10.1016/j.jhazmat.2015.02.047
  38. Wu, L., Peng, C. Y., Peng, Y. Z., Li, L. Y., Wang, S. Y., Ma, Y., 2012, Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift, J. Environ. Sci., 24(2), 234-241. https://doi.org/10.1016/S1001-0742(11)60719-5
  39. Yang, S. F., Tay, J. H., Liu, Y., 2005, Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules, J. Environ. Eng., 131(1), 86-92. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(86)
  40. Yuan, Q., Gong, H., Xi, H., Xu, H., Zhengyu, J., Ali, N., Wang, K., 2019, Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate, J. Environ. Sci., 84, 144-154. https://doi.org/10.1016/j.jes.2019.04.006
  41. Zhang, Z., Cao, R., Jin, L., Zhu, W., Ji, Y., Xu, X., Zhu, L., 2019, The regulation of N-acyl-homoserine lactones (AHLs)-based quorum sensing on EPS secretion via ATP synthetic for the stability of aerobic granular sludge, Sci. Total Environ., 673, 89-91.
  42. Zhu, L., Lv, M. L., Dai, X., Yu, Y. W., Qi, H. Y., Xu, X. Y., 2012, Role and significance of extracellular polymeric substances on the property of aerobic granule, Bioresour. Technol., 107, 46-54. https://doi.org/10.1016/j.biortech.2011.12.008