• 제목/요약/키워드: carbon/Epoxy composite

검색결과 620건 처리시간 0.024초

탄소섬유직물/에폭시 복합제의 모우드 I 층간파괴인성 평가 (Evaluation of Mode I Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composite)

  • 이은동;윤성호;신광복;정종철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.698-703
    • /
    • 2004
  • In this study, mode I interlaminar fracture phenomena of carbon fabric/epoxy composite for tilting train were investigated. Specimens were 25mm $\times$ 180mm $\times$ 4.7mm with an initial artificial delamination of 65mm at one end. This delamination with the thickness of 12.5$\mu$m and 25$\mu$m (teflon film) was used. Mode I interlaminar fracture toughness was measured using the double cantilever beam and the fractured surfaces were examined through a scanning electron microscope. The experimental results obtained in this study would be applicable in the design and structural analysis of the composite structures.

  • PDF

가로 등방성 복합재료의 초음파에 관한 연구 (The Wave Propagation in Transversely Isotropic Composite Laminates)

  • 김형원
    • 한국추진공학회지
    • /
    • 제10권2호
    • /
    • pp.62-69
    • /
    • 2006
  • 가로 등방성 복합재료에서 반사되거나 굴절된 파동의 속도와 입자방향, 그리고 진폭을 운동방정식과 구성방정식 그리고 파동수와 진동수로 표현된 변위식을 사용하여 구하였다. Snell 법칙을 사용하여 Eigenvalue 문제를 풀어 파동속도를 구하였으며 그 결과는 T300 Carbon fiber/5208 Epoxy 재료 성질을 이용하여 검증하였다. 이러한 분석은 수분 침수 C-scan을 이용하여 가로등방성 복합재료의 결점을 찾아내는데 응용될 수 있다.

Evaluation on Structural Safety for Carbon-Epoxy Composite Wing and Tail Planes of the 1.2 Ton Class WIG

  • Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2019
  • In the present study, structural safety and stability on the main wing and tail planes of the 1.2 ton WIG(Wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The carbon-epoxy composite material was used in design of wing structure. The skin-spar with skin-stressed structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, the design load was estimated with maximum flight load. From static strength analysis results using finite element method of the commercial codes. From the stress analysis results of the main wing, it was confirmed that the upper skin structure between the second rib and the third rib was unstable for the buckling load. Therefore in order to solve this problem, three stiffeners at the buckled region were added. After design modification, even though the weight of the wing was a little bit heavier than the target weight, the structural safety and stability was satisfied for design requirements.

메탈 파우더/탄소 섬유강화 복합재료의 전자파 치폐 효과와 기계적성질 (Electromagnetic interference shielding effectiveness and mechanical properties using metal powder/carbon fiber and epoxy-matrix composites)

  • 한길영;안동규;김진석
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.376-379
    • /
    • 2004
  • The aim of this study is to prepare mixed Ni/Mg/Al/Cu/Ti powder in epoxy matrix with carbon fiber (NCF, MCF, ACF, CCF, TCF) conductive composite possessing eletromagnetic interference(EMI) shilding effectiveness(SE). A series if NCF/MCF/ACF/CCF/TCF composite were prepared by the hand lay up method. The various compositions of NCF/MCF/ACF/CCF/TCF were 10, 25, 50 percent by weight. The best EMI shilding effectiveness of all NCF/MCF/ACF is doout 40dB.

  • PDF

초경드릴을 이용한 탄소섬유 에폭시 복합재료의 드릴링 특성에 있어 선단각의 영향 (Effects of the Point Angle on Drilling Characteristics Carbon Fiber Epoxy Composite Materials Using WC-drill Drilling)

  • 김형철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.85-91
    • /
    • 1996
  • The drilling experiment of carbon fiber epoxy composite material with WC-drill has been done under the various cutting condition in order to minimize the problems occured in the material when being drilled. It has been comfirmed by a frequencyanalysis of the cutting force signals that the variation of cutting force resulted from the periodic variation of the angle between the rotating drill and the stacking angle of the carbon fiber. The drilling experiment has been done with several drills having different point angles and the drilling characteristics, like the effects such that change in the point angle influences the cutting force and the external surface condition, was evaluated.

  • PDF

샌드위치 구조의 전자기파 흡수체 제작 및 전자기적 특성 (Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures)

  • 박기연;이상의;한재흥;김천곤;이인
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.131-134
    • /
    • 2004
  • The object of this study is to design the Radar Absorbing Structures (RAS) having sandwich structures in the X-band $(8.2\~12.4GHz)$ frequencies. Glass fabric/epoxy composites containing conductive carbon blacks and carbon fabric/epoxy composites were used for the face sheets. Polyurethane (PU) foams containing multi­walled carbon nanotube (MWNT) were used for the core. Their permittivities in the X-band were measured using the transmission line technique. The reflection loss characteristics for multi-layered sandwich structures were calculated using the theory of transmission and reflection in a multi-layered medium. Three kinds of specimens were fabricated and their reflection losses in the X-band were measured using the free space technique. Experimental results were in good agreements with simulated ones in 10dB absorbing bandwidth.

  • PDF

탄소섬유 에폭시 복합재료의 드릴링 특성에 있어 섬유 배열방향과 선단각의 영향에 관한 연구 (A study on effects of the fiber orientation and point angle on drilling characteristics of carbon fiber epoxy composite materials)

  • 김형철;이우영;남궁석
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.119-125
    • /
    • 1997
  • The drilling experiment of carbon fiber epoxy composite material with WC-drill has been done under the various cutting conditions in order to minimize the problems occurred in the material while being drilled. It has been confirmed by a frequency analysis of the cutting force signals that the variation of cutting force resulted from the periodic variation of the angle between the ortating drill and the stacking angle of the carbon fiber. By the drilling experiment with several drills having different point angles, the drilling char- acteristics, which show the relations between the change in the point angle and cutting force or external surface condition, were analyzed.

  • PDF

충격 손상된 카본/에폭시 복합재 구조의 패치 접착 보수 방안 적용 후 압축 강도 특성 평가 (A Study on Compressive Strength of Carbon/epoxy Composite Structure Repaired with Bonded Patches after Impact Damage)

  • 공창덕;박현범;임성진;신철진
    • Composites Research
    • /
    • 제23권5호
    • /
    • pp.15-21
    • /
    • 2010
  • 본 연구에서는 손상된 복합재 구조의 유지 보수 방안에 대한 연구를 수행하였다. 복합재료 구조의 손상 수리 방안을 제시하고 수리 절차를 카본/에폭시 적층판 복합재 구조에 적용하여 시편 시험 및 수치 해석을 통해 분석하였다. 손상은 중량 낙하식 충격 시험기를 활용하여 복합재 구조 시편에 충격 손상으로 모사하였다. 손상된 복합재 적층판 구조는 충격 손상 부위 제거 후 외부 패치 수리 기법을 적용하여 수리하였다. 충격 손상 후 유지 보수된 시편과 손상이 없는 시편의 압축 강도를 실험적 및 해석적으로 비교 분석하였다. 이를 바탕으로 유지 보수된 시편의 강도 회복 능력을 고찰하였다.

하이브리드 복합재 철도차량 차체의 화재 안전성 평가연구 (A Study on the Fire Safety of a Hybrid Composite Train Carbody)

  • 김정석;이덕희;정우성;조세현
    • Composites Research
    • /
    • 제21권4호
    • /
    • pp.1-6
    • /
    • 2008
  • 본 논문에서는 탄소/에폭시 면재와 알루미늄 허니콤 심재를 갖는 바디와 스테인레스 언더프레임을 갖는 철도차량 차체에 대한 화재안전성평가 시험을 수행하였다. 이를 위해 실규모 차체를 제작하고 이를 이용하여 시험을 수행하였다. 시험에 적용된 차체는 내장재가 포함되지 않은 차체와 내장재를 포함을 차체 두가지를 이용하였으며 시험조건은 대구지하철 화재사고 시나리오에 근거하여 설정하였다. 시험결과 차체 및 내장재 표면의 최대온도는 각각의 발화온도에 미치지 못함을 확인하였고, 차체 내부에 화염전파도 발생하지 않았다.

Carbon/Epoxy 적층판의 저속충격손상에 따른 잔류강도 평가 (Evaluation of Residual Strength of Carbon/Epoxy Laminates Due to Low Velocity Impact Damage)

  • 강민성;최정훈;김상영;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.102-108
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic(CFRP) composite materials have been widely used in various fields of engineering because of its advanced properties. Also, CFRP composite materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. However CFRP composite materials are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. By using obtained residual strength and Tan-Cheng failure criterion, residual strength of CFRP laminate with arbitrary fiber angle were evaluated.