• 제목/요약/키워드: carbon/Epoxy composite

검색결과 620건 처리시간 0.025초

자동차용 탄소 연속섬유 복합재 선루프 프레임의 개발에 대한 연구 (Development of Carbon Continuous-fiber Composite Frame for Automotive Sun-roof Assembly)

  • 김진봉;김경덕;김성진;신동완;김덕기
    • 한국자동차공학회논문집
    • /
    • 제25권3호
    • /
    • pp.350-359
    • /
    • 2017
  • This paper presents a new holistic development approach for the carbon continuous-fiber composite frame of an automotive sunroof assembly. The original steel frame has been designed to get higher bending stiffness with its corrugated cross-sectional shape. The new approach uses the prepregs of a fast cure epoxy and PCM manufacturing processing. For higher productivity, the new frames feature a very simple plat cross sectional shape but achieve high bending stiffness through the laminate design. The sandwich structure with a PET foam core was presented. The frames were made of carbon UD laminae covered single carbon fabric on the outer surfaces. The fabrics provide torsional stiffness and also hold the carbon UD fibers floating in the low viscous epoxy resin of prepregs at the curing temperature during processing. The final product yields approximately 18 % savings in weight compared with the original.

탄소섬유/에폭시 복합적층판의 피로수명 분포특성 (Characteristics of Fatigue Life Distribution for Carbon/Epoxy Composite Laminates)

  • 김영기;박병준;김재훈;이영신;전제춘
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.119-123
    • /
    • 2000
  • The characteristics of fatigue life distribution for Carbon/epoxy composite laminates was investigated under tension-tension loading(R=0.1). The statistical nature of the fatigue life of the composite materials was analyzed by Weibull, normal, lognormal distributions As a result, it was observed that the correlation between the experimental results and the theoretical predictions for the fatigue life is good. The distribution of the static ultimate strength has the characteristic of lognormal distribution and distribution of the fatigue life has characteristics of the weibull distribution.

  • PDF

Effects of electrochemical oxidation of carbon fibers on interfacial shear strength using a micro-bond method

  • Kim, Dong-Kyu;An, Kay-Hyeok;Bang, Yun Hyuk;Kwac, Lee-Ku;Oh, Sang-Yub;Kim, Byung-Joo
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.32-39
    • /
    • 2016
  • In this work, we studied the effects of electrochemical oxidation treatments of carbon fibers (CFs) on interfacial adhesion between CF and epoxy resin with various current densities. The surface morphologies and properties of the CFs before and after electrochemical-oxidation-treatment were characterized using field emission scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and single-fiber contact angle. The mechanical interfacial shear strength of the CFs/epoxy matrix composites was investigated by using a micro-bond method. From the results, electrochemical oxidation treatment introduced oxygen functional groups and increased roughness on the fiber surface. The mechanical interfacial adhesion strength also showed higher values than that of an untreated CF-reinforced composite.

Effects of Surface Nitrification on Thermal Conductivity of Modified Aluminum Oxide Nanofibers-Reinforced Epoxy Matrix Nanocomposites

  • Kim, Byung-Joo;Bae, Kyong-Min;An, Kay-Hyeok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3258-3264
    • /
    • 2012
  • Aluminum oxide ($Al_2O_3$) nanofibers were treated thermally under an ammonia ($NH_3$) gas stream balanced by nitrogen to form a thin aluminum nitride (AlN) layer on the nanofibers, resulting in the enhancement of thermal conductivity of $Al_2O_3$/epoxy nanocomposites. The micro-structural and morphological properties of the $NH_3$-assisted thermally-treated $Al_2O_3$ nanofibers were characterized by X-ray diffraction (XRD) and atomic force microscopy (AEM), respectively. The surface characteristics and pore structures were observed by X-ray photoelectron spectroscopy (XPS), Zeta-potential and $N_2$/77 K isothermal adsorptions. From the results, the formation of AlN on $Al_2O_3$ nanofibers was confirmed by XRD and XPS. The thermal conductivity (TC) of the modified $Al_2O_3$ nanofibers/epoxy composites increased with increasing treated temperatures. On the other hand, the severely treated $Al_2O_3$/epoxy composites showed a decrease in TC, resulting from a decrease in the probability of heat-transfer networks between the filler and matrix in this system due to the aggregation of nanofiber fillers.

Cocure/Precure 경화공정에 의해 제조된 Carbon/Epoxy 복합재료의 미시적 파손거동에 대한 AE 특성 (AE Characteristics on Microscopic Failure Behavior of Carbon/Epoxy Comosite Prepared by Cocure and Precure Process)

  • 이진경;이준현;이민래;최흥섭
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2520-2528
    • /
    • 2000
  • Mechanical and physical properties of composite materials make a great difference due to their cure process condition. In order to clarify the effect of cure process condition on the microscopic damage behavior and failure mechanism of Carbon/Epoxy composites, three point bend test has been performed. For this purpose, two kinds of specimens with single adhesive and multiple adhesive layers were prepared. For single adhesive layer, four different types of specimen were used, that is, non-sanding, sanding, cocured, laminated specimens. Three different types of specimen were also used for the multiple adhesive layer, non-sanding, sanding, cocured specimens. Acoustic emission technique has also been employed to monitor the damage progresses associated with each micro-failure mechanism. The characteristics of AE parameters associated with micro-failure mechanism of each specimen were discussed.

염수환경에 노출된 철도차량용 탄소섬유/에폭시 복합재의 내구성 평가 (Durability of Carbon/Epoxy Composites for Train Carbody under Salt Water Environment)

  • 황영은;윤성호;김정석;한성호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.852-858
    • /
    • 2007
  • The durability of carbon/epoxy composites under salt water environment was investigated through salt water spray tester. Salt water environment was obtained through salt spray and salt immersion. 5% NaCl solution was used for salt water as natural salt water. Mechanical test was performed to obtain tensile properties, flexural properties, and shear properties of carbon/epoxy composite over 12 months under salt water environment. Dynamic mechanical analyzer was used to investigate thermal analysis properties such storage modulus, loss modulus, and tan ${\delta}$. Also FT/IR test was conducted to investigate a change in chemical structure. According to the results, mechanical properties were found to be slowly degraded as a function of exposure times. Regarding to thermal analysis properties, storage modulus was insensitive to exposure times, but loss modulus was shown to be slightly decreased. Although the shape and location of peak in FT/IR were not much changed, the intensity of peak in FT/IR was affected on exposure times. We also found that salt water immersion was more severe to the durability of carbon/epoxy composite rather than salt water spray.

  • PDF

PEMFC용 탄성 탄소 복합재료 분리판의 기계적 강도 및 전기전도도에 미치는 탄소섬유 필라멘트와 흑연 섬유의 영향 (Effect of Carbon Fiber Filament and Graphite Fiber on the Mechanical Properties and Electrical Conductivity of Elastic Carbon Composite Bipolar Plate for PEMFC)

  • 이재영;이우금;임형렬;정규범;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제25권2호
    • /
    • pp.131-138
    • /
    • 2014
  • Highly conductive bipolar plate for polymer electrolyte membrane fuel cell (PEMFC) was prepared using phenol novolac-type epoxy/graphite powder (GP)/carbon fiber filament (CFF) composite, and a rubber-modified epoxy resin was introduced in order to give elasticity to the bipolar plate graphite fiber (GF) was incorporated in order to improve electrical conductivity. To find out the cure condition of the mixture of novolac-type and rubber-modified epoxies, differential scanning calorimetry (DSC) was carried out and their data were introduced to Kissinger equation. And tensile and flexural tests were carried out using universal testing machine (UTM) and the surface morphology of the fractured specimen and the interfacial bonding between epoxy matrix and CFF or GF were observed by a scanning electron microscopy (SEM).

Toughened 에폭시 수지를 사용한 탄소 섬유강화 복합재료의 충격파괴 거동 (Impact Fracture Behavior of Toughened Epoxy Resin Applied Carbon Fiber Reinforced Composites)

  • 이정훈;황승철;김민영;김원호;황병선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.111-114
    • /
    • 2003
  • Thermosets are highly cross-linked polymers with a three-dimensional molecular structure. The network structure gives rise to mechanical properties, however, one major drawback of thermosets, which also results from their network structure, is their poor resistance to impact and to crack initiation. In this study, to solve this problem, the reactive thermoplastics such as amine terminated polyetherimide (ATPEI), ATPEI-CTBN-ATPEI(ABA) triblock copolymer, CTBN-ATPEI(AB) diblock copolymer, and carboxyl group modified ATPEI was synthesized, after that blended with epoxy resin, and the carbon fiber reinforced composites were fabricated. The impact load, energy, and delamination were investigated by using drop weight impact test and C-scan test. As a results, the ABA/epoxy blend system showed good impact properties.

  • PDF

두 가지 동적 진동실험을 통한 Carbon-epoxy와 Graphite-Epoxy복합재료의 동적 탄성계수 측정 (Experimental Determinations of Elastic Constants Composite Materials, Carbon-epoxy and Graphite-epoxy, Using Two Dynamic Vibratory Techniques)

  • 이동환;박세만;박명균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.596-602
    • /
    • 2001
  • Structures in current use are required of weight reduction and strength in many instances. This naturally necessitates frequent applications of composite materials in many areas. Elastic constants are one of key parameters in determining design guidelines for the specific applications of particular materials. In this research two vibratory techniques (acoustic resonance method and impulse technique)are utilized to evaluate elastic constants. Both techniques are suitable for the measurements of dynamic elastic constants. The Impulse technique provides a quick method for the measurement while the acoustic resonance method produces the values of elastic constants which agree better with theoretical values.

  • PDF

고에너지 방사선이 탄소섬유/에폭시 복합재료의 기계적 물성에 미치는 영향 (Effects of High Energy Radiation on the Mechanical properties of Carbon Fiber/Dpoxy Composites)

  • 박종신
    • 유변학
    • /
    • 제3권1호
    • /
    • pp.22-29
    • /
    • 1991
  • In an effort to predict the long term durability of carbon fiber/epoxy composites in a space environ-ment interlaminar shear strength (ILSS) of the composites was measured as a function of 0.5 MeV electron radiation dosage. For the ILSS measurements a notch method (ASTM D3846) was used with and without side-supports. the supports were used to prevent peeling or bending during the test. The ILSS of both T300/ 5209 longitudinal composite system increases monotonically with radiation when the test is corried out without the support the ILSS of the composites increases initially but then decreases with further radiation. It is also observed that the ILSS of the unsupported case is much lower than that of the supported case. Measurement of epoxy modulus shows that the elastic modulus increases monotonically with radiation. But the breaking strength of the epoxy decreases with radiation. Electron Spectroscopy for Chemcal Analysis shows that the oxygen contents at both the pure epoxy surface and the composite fracture surface increase with radiation dose resulting in the increase of polarity at the interfacial region. This may be a supporting evidence for the increase in the ILSS of the composites.

  • PDF