• Title/Summary/Keyword: carbide wafer

Search Result 36, Processing Time 0.023 seconds

Removal of Fe, Si from Silicon Carbide Sludge Generated in the Silicon Wafer Cutting Process (실리콘 웨이퍼 절단공정(切斷工程)에서 발생(發生)하는 실리콘 카바이드 슬러지로부터 철(鐵), 실리콘 제거(除去))

  • Park, Hoey Kyung;Go, Bong Hwan;Park, Kyun Young;Kang, Tae Won;Jang, Hee Dong
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.22-28
    • /
    • 2013
  • In the present study, the possibility of recovering and recycling the silicon carbide(SiC) from a silicon sludge by removing Fe and Si impurities was investigated. Si and SiC were separated from the silicon sludge using centrifugation. The separated SiC concentrate consisted of Fe, Si and SiC, in which Fe and Si were removed to recover the pure SiC. Leaching with acid/alkali solution was compared with the vapor-phase chlorination. The Fe concentration removed in the SiC was 49 ppm, and it was separated by leaching with 1 M HCl solution at $80^{\circ}C$ for 1 h. The Si concentration removed in the SiC was 860 ppm, and it was separated by leaching with 1M NaOH solution at $50^{\circ}C$ for 1 h. The SiC concentrate was chlorinated in a tubular reactor, 2.4 cm in diameter and 32 cm in length. The boat filled with SiC concentrate was located at the midpoint of the alumina tube, then, the chlorine and nitrogen gas mixture was introduced. The Fe and Si concentration removed in the SiC were 48 ppm and 405 ppm, respectively, at $500^{\circ}C$ reactor temperature, 4 h reaction time, 300 cc/min gas flow rate, and 10% $Cl_2$ gas mole fraction.

Growth of ring-shaped SiC single crystal via physical vapor transport method (PVT 방법에 의한 링 모양의 SiC 단결정 성장)

  • Kim, Woo-Yeon;Je, Tae-Wan;Na, Jun-Hyuck;Choi, Su-Min;Lee, Ha-Lin;Jang, Hui-Yeon;Park, Mi-Seon;Jang, Yeon-Suk;Jung, Eun-Jin;Kang, Jin-Ki;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • In this research, a ring-shaped silicon carbide (SiC) single crystal manufactured using the PVT (Physical Vapor Transport) method was proposed to be applied to a SiC focus ring in semiconductor etching equipment. A cylindrical graphite structure was placed inside the graphite crucible to grow a ring-shaped SiC single crystal by the PVT method. SiC single crystal ring without crack was successfully obtained in case of using SiC single crystal wafer as a seed. A plasma etching process was performed to compare plasma resistance between the CVD-SiC focus ring and the PVT-SiC focus ring. The etch rate of ring materials in PVT-single crystal SiC focus ring was definitely lower than that of CVD-SiC focus ring, indicating better plasma resistance of PVT-SiC focus ring.

Surface analysis of a-$Si_xC_{1x}:H$ deposited by RF plasma-enhanced CVD (RF plasma-enhancd CVD 법에 의해 증착된 a-$Si_xC_{1x}:H$ 의 표면분석)

  • Kim, Yong-Tak;Yang, Woo-Seok;Lee, Hyun;Byungyou Hong;Yoon, Dae-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.285-303
    • /
    • 1999
  • Thin films of hydrogenated amorphous silicon carbide compounds (a-SixC1x:H) of different compositions were deposited on Si substrate by RF plasma-enhanced chemical vapor deposition (PECVD). Experiments were carried out using silane(SiH4) and methane(CH4) as the gas precursors at 1 Torr and at low substrate temperature (25$0^{\circ}C$). The gas flow rate was changed with every other parameters (pressure, temperature, RF power) fixed. The substrate was Si(100) wafer and all of the films obtained were amorphous. The bonding structure of a-SixC1x:H films deposited was investigated by X-ray photoelectron spectroscopy (XPS) for the film compositions. In addition, the surface morphology of films was investigated by atomic force microscopy (AFM).

  • PDF

Crystal Characteristics of 3C-SiC Thin-films Grown on 2 inch Si(100) wafer (2 inch Si(100)기판위에 성장된 3C-SiC 박막의 결정특성)

  • Chung, Su-Young;Chung, Yun-Sik;Ryu, Ji-Goo;Chung, Gwiy-Sang;Shigehiro, Nishino
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.452-455
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) substrate up to a thickness of $4.3{\mu}m$ by APCVD method using HMDS(hexamethyildisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was $4.3{\mu}m/hr$. The 3C-SiC epitaxical films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near $796cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The heteroepitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra$(2{\theta}=41.5^{\circ})$.

  • PDF

Surface analysis of a-$Si_{x}C_{1-x}$: H deposited by RF plasma-enhanced CVD

  • Kim, Yong-Tak;Yang, Woo-Seok;Lee, Hyun;Byungyou Hong;Yoon, Dae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • Thin films of hydrogenated amorphous silicon carbide compounds ($a-Si_{x}C_{1-x}:H$) of different compositions were deposited on Si substrate by RF plasma-enhanced chemical vapor deposition (PECVD). Experiments were carried out using silane (SiH$_4$) and methane ($CH_4$) as the gas precursors at 1 Torr and at a low substrate temperature ($250^{\circ}C$). The gas flow rate was changed with the other parameters (pressure, temperature, RF power) fixed. The substrate was Si(100) wafer and all of the films obtained were amorphous. The bonding structure of $a-Si_{x}C_{1-x}:H$films deposited was investigated by X-ray photoelectron spectroscopy (XPS) for the film compositions. In addition, the surface morphology of films was investigated by atomic force microscopy (AFM).

  • PDF

The Fabrication of Packaged 4H-SiC 2kV power PiN diode and Its Electrical Characterization (탄화규소 (4H-SiC) 기반 패키지 된 2kV PiN 파워 다이오드 제작과 전기적 특성 분석)

  • Song, Jae-Yeol;Kang, In-Ho;Bahng, Wook;Joo, Sung-Jae;Kim, Sang-Cheol;Kim, Nam-Kyun;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.67-68
    • /
    • 2008
  • In this study we have developed a packaged silicon carbide power diode with blocking voltage of 2kV. PiN diodes with 7 field limiting rings (FLRs) as an edge termination were fabricated on a 4H-SiC wafer with $30{\mu}m$-thick n-epilayer with donor concentration of $1.6\times10^{15}cm^{-3}$. From packaged PiN diode testing, we obtained reverse blocking voltage of 2kV, forward voltage drop of 4.35V at 100A/$cm^2$, on-resistance of $6.6m{\Omega}cm^2$, and about 8 nanosec reverse recovery time. These properties give a potential for the power system application.

  • PDF

Characterization of 3C-SiC grown on Si(100) wafer (Si(100) 기판상에 성장된 3C-SiC의 특성)

  • 나경일;정연식;류지구;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.533-536
    • /
    • 2001
  • Single crystal cubic silicon carbide(3C-SiC) thin film were deposited on Si(100) substrate up to a thickness of 4.3 $\mu\textrm{m}$ by APCVD(atmospheric pressure chemical vapor deposition) method using hexamethyildisilane(HMDS) at 1350$^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like. The growth rate of the 3C-SiC films was 4.3 $\mu\textrm{m}$/hr. The 3C-SiC epitaxical layers on Si(100) were characterized by XRD(X-ray diffraction), raman scattering and RHEED(reflection high-energy electron diffraction), respectively The 3C-SiC distinct phonons of TO(transverse optical) near 796 cm$\^$-1/ and LO(longitudinal optical) near 974${\pm}$1 cm$\^$-1/ were recorded by raman scattering measurement. The deposition films were identified as the single crystal 3C-SiC phase by XRD spectra(2$\theta$=41.5$^{\circ}$). Also, with increase of films thickness, RHEED patterns gradually changed from a spot pattern to a streak pattern

  • PDF

Thermal-annealing behavior of in-core neutron-irradiated epitaxial 4H-SiC

  • Junesic Park ;Byung-Gun Park;Gwang-Min Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.209-214
    • /
    • 2023
  • The effect of thermal annealing on defect recovery of in-core neutron-irradiated 4H-SiC was investigated. Au/SiC Schottky diodes were manufactured using a 4H-SiC epitaxial wafer that was neutron-irradiated at the HANARO research reactor. The electrical characteristics of their epitaxial layers were analyzed under various conditions, including different neutron fluences (1.3 × 1017 and 2.7 × 1017 neutrons/cm2) and annealing times (up to 2 h at 1700 ℃). Capacity-voltage measurements showed high carrier compensation in the neutron-irradiated samples and a recovery tendency that increased with annealing time. The carrier density could be recovered up to 77% of the bare sample. Deep-level-transient spectroscopy revealed intrinsic defects of 4H-SiC with energy levels 0.47 and 0.68 eV below the conduction-band edge, which were significantly increased by in-core neutron irradiation. A previously unknown defect with a high electron-capture cross-section was discovered at 0.36 eV below the conduction-band edge. All defect concentrations decreased with 1700 ℃ annealing; the decrease was faster when the defect level was shallow.

Fabrications and Analysis of Schottky Diode of Silicon Carbide Substrate with novel Junction Electric Field Limited Ring (새로운 전계 제한테 구조를 갖는 탄화규소 기판의 쇼트키 다이오드의 제작과 특성 분석)

  • Cheong Hui-Jong;Han Dae-Hyun;Lee Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1281-1286
    • /
    • 2006
  • We have used the silicon-carbide(4H-SiC) instead of conventional silicon materials to develope of the planar junction barrier schottky rectifier for ultra high breakdown voltage(1,200 V grade). The substrate size is 2 inch wafer, Its concentration is $3*10^{18}/cm^{3}$ of $n^{+}-$type, thickness of epitaxial layer $12{\mu}m$ conentration is $5*10^{15}cm^{-3}$ of n-type. The fabticated devices are junction barrier schottky rectifier, The guard ring for improvement of breakdown voltage is designed by the box-like impurity of boron, the width and space of guard ring was designed by variation. The contact metals to rectify were used by the $Ni(3,000\:{\AA})/Au(2,000\:{\AA})$. As a results, the on-state voltage is 1.26 V, on-state resistance is $45m{\Omega}/cm^{3}$, maximum value of improved reverse breakdown voltage is 1180V, reverse leakage current density is $2.26*10^{-5}A/CM^{3}$. We had improved the measureme nt results of the electrical parameters.

Additive Effects on Sintering of Si/SiC Mixtures (Si/SiC 혼합물의 소결특성에 미치는 첨가제의 영향)

  • Kim, Soo Ryong;Kwon, Woo Teck;Kim, Younghee;Kim, Jong Il;Lee, Yoon Joo;Lee, Hyun Jae;Oh, Sea Cheon
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.701-705
    • /
    • 2012
  • The effects of clay, aluminum hydroxide, and carbon powder on the sintering of a Si/SiC mixture from photovoltaic silicon-wafer production were investigated. Sintering temperature was fixed at $1,350^{\circ}C$ and the sintered bodies were characterized by SEM and XRD to analyze the microstructure and to measure the apparent porosity, absorptivity, and apparent density. The XRD peak intensity of SiC in the sintered body was increased by adding 5% carbon to the Si/SiC mixture. From this result, it is confirmed that Si in the Si/SiC mixture had reacted with the added carbon. Addition of aluminum hydroxide decreased the cristobalite phase and increased the stable mullite phase. The measurement of the physical properties indicates that adding carbon to the Si/SiC mixture enables us to obtain a dense sintered body that has high apparent density and low absorptivity. The sintered body produced from the Si/SiC mixture with aluminum hydroxide and carbon powder as sintering additives can be applied to diesel particulate filters or to heat storage materials, etc., since it possesses high thermal conductivity, and anticorrosion and antioxidation properties.