• Title/Summary/Keyword: carbide behavior

Search Result 211, Processing Time 0.028 seconds

Dissolution of Carbide Particles at the Heat Affected Zone of Laser Welded tow Carbon Steel (저탄소 박판강재의 레이저 용접과정에서 열영향부에 존재하는 탄화물 입자의 분해 거동)

  • 김기철;조흥규;정호신
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.809-815
    • /
    • 2002
  • Metallurgical behavior of laser welded cold rolled low carbon steel was investigated. Welding was performed with CW Nd:YAG laser system. Applied laser power, travel speed and nitrogen blowing pressure were 720W CW, 17mm/s and 196kPa, respectively. According to the test results, many carbide particles were observed on the base metal surface that was polished and etched with nital solution. The carbide particles at the welding heat affected zone were thought to be dissolved during welding process. Microstructural inspection revealed that dissolved carbide particles formed mixed phase of very fine martensite and bainite. Test results also demonstrated that the hardness of matrix remained constant value of around 160Hv over the welding heat affected zone. Dissolved carbide particles, however, showed higher average hardness values of around 276Hv near the fusion boundary and 700Hv at the welding heat affected zone of 0.4mm apart from the fusion line. It was considered that care should be given to minimize the test error when measuring the hardness value since many of the dissolved particles were so small that it was not easy to aim the indentor of the testing machine just on the objects.

Mechanical Behavior of Indentation Stress in Carbon Fiber Reinforced Silicon Carbide Composites with Different Densities (서로 다른 밀도를 갖는 탄소섬유강화 탄화규소 복합재료의 압흔응력에 의한 기계적 거동)

  • Lee, Kee-Sung;Kim, Il-Kyum;Kim, Tae-Woo;Kim, Se-Young;Han, In-Sub;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.288-292
    • /
    • 2011
  • In this study, we investigated the mechanical behavior of carbon fiber reinforced silicon carbide composites by indentation stress. Relatively porous and dense fiber reinforced ceramic composites were fabricated by liquid silicon infiltration (LSI) process. Densification of fiber composite was controlled by hardening temperature of preform and consecutive LSI process. Load-displacement curves were obtained during indentation of WC sphere on the carbon fiber reinforced silicon carbide composites. The indentation damages at various loads were observed, and the elastic modulus were predicted from unloading curve of load-displacement curve.

Abrasion Wear Behavior of Recycled Tungsten Carbide Reinforced Metal Matrix Composite (재생 초경합금 분말을 활용한 금속기지 복합재료의 Abrasion 마모거동)

  • Kang, Nam-Hyun;Chae, Hyun-Byung;Kim, Jun-Ki;Choi, Jong-Ha;Kim, Jeong-Han
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.850-854
    • /
    • 2003
  • The abrasion wear behavior on the hardfacing weld was investigated by performing abrasion wear, hardness, and microstructural tests. The gas metal arc(GMA) weld was produced by using the cored wire which was filled with the hard metal, i.e., the recycled tungsten carbide (WC) reinforced metal matrix composite. For 30% addition of the hard metal, the abrasion wear resistance was significantly improved comparing with that for 20% addition of the hard metal. Above 30% addition of the hard metal, however, there was no significant improvement of the wear resistance. The improvement of the wear resistance was due to the increased amount of eutectic carbides(W$_{6}$C) which was formed during GMA welding. For the weld in which the hard metal was added to 30-40%, an optimum level of abrasion wear resistance was performed.

Carbide Behavior in STD11 Tool Steel during Heat Treatment (STD11 공구강의 열처리 온도에 따른 탄화물 거동)

  • Hong, Ki-Jung;Song, Jin-Hwa;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.262-270
    • /
    • 2011
  • Carbide precipitation and dissolution behavior at various temperatures during heat treatment has been studied in STD11 cold working die steel through confocal scanning laser microscopy; dilatometry; and X-ray diffraction analysis. The equilibrium phase diagram and phase fractions with temperature were calculated using a FactSage program. Confocal laser microscopic observation revealed that ${\alpha}$ to ${\gamma}$ transformation temperature is near $800^{\circ}C$; M7C3 carbides melt at $1245^{\circ}C$; and the melting temperature of STD11 is near $1370^{\circ}C$. XRD results indicated that the M23C6 carbides dissolve in the matrix if austenitized at over $1030^{\circ}C$; while the M7C3 carbides remain up to $1200^{\circ}C$ although their amount decreases. The calculated equilibrium phase diagram showed good agreement with experimental results on carbide dissolution and phase transformation temperatures.

High Temperature Oxidation Behavior and Mechanical Characteristic of Recrystallized Alloy 617 (재결정에 따른 Alloy 617의 고온 산화 거동 및 기계적 특성)

  • Lim, Jeong Hun;Jo, Tae Sun;Park, Ji Yeon;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1078-1083
    • /
    • 2010
  • In this study, high temperature oxidation behavior of Alloy 617 was investigated to evaluate the effect of grain size for Alloy 617. The grain size of grain-refined Alloy 617 (GR617) was reduced to $5{\mu}m$ from $71{\mu}m$ for as-received Alloy 617 (AR617) by recrystallization after cold rolling. After high temperature aging, the oxide layers of AR617 and GR617 consisted of $Cr_2O_3$ external oxide scale and $Al_2O_3$ internal oxide. The external oxide scale resulted in a Cr-depleted zone and a carbide free zone below the scale. The depth of the carbide free zone was deeply formed in GR617. On the other hand, the depth of the internal oxide layer in GR617 was shorter than that in AR617. After a 3-point bending test, crack propagation of GR617 was more restricted than that of AR617 because of the different microstructure of the internal oxide.

Localized Corrosion Behavior of Inconel 718 in a Chloride-Containing Aqueous Solution (염수 환경에서 Inconel 718의 국부 부식 거동)

  • Lee, Jun-Seob;Lee, Yejin;Kwon, Soon il;Shin, Jungho;Lee, Je-Hyun
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.361-366
    • /
    • 2021
  • Localized corrosion behavior of Ni-based Inconel 718 alloy was investigated by electrochemical anodic polarization techniques in NACE TM 0177 A solution of 5 wt% NaCl + 0.5 wt% acetic acid at room temperature. After the solution heat treated at 1080 ℃ for 2.5 h, Inconel 718 was age-hardened at 780 ℃ for 8 h. The microstructure of the alloy surface was investigated by optical microscopic or scanning electron microscopic technique. The austenitic phase with the presence of metal carbides was observed on the surface of Inconel 718. Metal-carbides such as Nb-Mo and Ti-carbide with diameters of approximately 10 and 3 ㎛, respectively, were formed in Inconel 718. Anodic polarization results revealed that localized corrosion was observed at the interface between austenitic phase of a substrate and metal carbides. Difference in electrochemical property between a metal carbide and an austenitic substrate could provide an initiation site for localized corrosion of Inconel 718 surface.

The Fatigue Crack Growth Behavior of Silicon Carbide Particles Reinforced Aluminun Metal Matrix Composites (SiC 입자 보강 Al 복합재료의 피로균열 진전거동)

  • 권재도;문윤배;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.122-131
    • /
    • 1995
  • The research trends for metal matrix composites have been on basic mechanical properties, fatigue behavior after aging and fractographic observations. In this study, the fatigue crack initiation as well as the fatigue crack growth behavior and the fracture mechanism were investigated through observations of the fracture surface on silicon carbide particles reinforced aluminum metal matrix composites(SiCp/Al). Based on the fractographic study done by scanning electron microscope and replica, crack growth path model and fracture mechanism are presented. The mechanical properties, such as the tensile strength, yield strength and elongation of SiCp/Al composites are improved in a longitudinal direction, however, the fatigue life is shorter than the basic Al6061 alloys. From fractographic observations, it is found that the failure mode is ductile in basic Ai6061 alloys. And because some SiC particles were pulled out from the matrix and a few SiC particles could be seen on the fracture surface of SiCp/Al, crack growth paths are believed to follow the interface of the matrix and its particles.