DOI QR코드

DOI QR Code

High Temperature Oxidation Behavior and Mechanical Characteristic of Recrystallized Alloy 617

재결정에 따른 Alloy 617의 고온 산화 거동 및 기계적 특성

  • Lim, Jeong Hun (Department of Materials Science and Engineering, Hanyang University) ;
  • Jo, Tae Sun (Department of Materials Science and Engineering, Hanyang University) ;
  • Park, Ji Yeon (Nuclear Materials Research Center, Korea Atomic Energy Research Institute) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
  • 임정훈 (한양대학교 신소재공학부) ;
  • 조태선 (한양대학교 신소재공학부) ;
  • 박지연 (한국원자력연구원 원자력재료연구부) ;
  • 김영도 (한양대학교 신소재공학부)
  • Received : 2010.09.30
  • Published : 2010.12.25

Abstract

In this study, high temperature oxidation behavior of Alloy 617 was investigated to evaluate the effect of grain size for Alloy 617. The grain size of grain-refined Alloy 617 (GR617) was reduced to $5{\mu}m$ from $71{\mu}m$ for as-received Alloy 617 (AR617) by recrystallization after cold rolling. After high temperature aging, the oxide layers of AR617 and GR617 consisted of $Cr_2O_3$ external oxide scale and $Al_2O_3$ internal oxide. The external oxide scale resulted in a Cr-depleted zone and a carbide free zone below the scale. The depth of the carbide free zone was deeply formed in GR617. On the other hand, the depth of the internal oxide layer in GR617 was shorter than that in AR617. After a 3-point bending test, crack propagation of GR617 was more restricted than that of AR617 because of the different microstructure of the internal oxide.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. K. Shigemitu, J. B. Newkirk, A. Ohtomo, and Y. Saiga, Metall. Trans. 11, 1019 (1980). https://doi.org/10.1007/BF02654716
  2. C. Cabet, J. Chapovaloff, F. Rouillard, G. Girardin, D. Kaczorowski, K. Wolski, and M. Pijolat, J. Nucl. Mater. 375, 173 (2008). https://doi.org/10.1016/j.jnucmat.2007.11.006
  3. W. G. Kim, S. N. Yin, and Y. W. Kim, J. Kor. Inst. Met. & Mater. 47, 613 (2009).
  4. T. Hirano, M. Okada, H. Araki, T. Noda, H. Yoshida, and R. Watanabe, Metall. Trans. A. 12, 451 (1981). https://doi.org/10.1007/BF02648542
  5. S. H. Cho, I. J. Cho, G. S. Yoon, and S. W. Park, Met. Mater. Int. 13, 303 (2007). https://doi.org/10.1007/BF03027886
  6. T. H. Bassford and J. C. Hosier, Nucl. Technol. 66, 35 (1984). https://doi.org/10.13182/NT84-A33452
  7. T. S. Jo, S. H. Kim, D. G. Kim, J. Y. Park, and Y. D. Kim, Met. Mater. Int. 14, 739 (2008). https://doi.org/10.3365/met.mat.2008.12.739
  8. T. S. Jo, S. H. Lee, G. S. Kim, S. H. Kim, and Y. D. Kim, Kor. J. Mater. Res. 17, 268 (2007). https://doi.org/10.3740/MRSK.2007.17.5.268
  9. P. J. Ennis, W. J. Quadakkers, and H. Schuster, Journal De Physique IV. 3, 979 (1993).
  10. S. K. Sharma, G. D. Ko, F. X. Li, and K. J. Kang, J. Nucl. Mater. 378, 144 (2008). https://doi.org/10.1016/j.jnucmat.2008.04.021
  11. C. H. Jang, D. J. Lee, and D. J. Kim, Int. J Pres. Ves. Pip. 85, 368 (2008). https://doi.org/10.1016/j.ijpvp.2007.11.010
  12. H.-J. Christ, U. Kunecke, K. Meyer, and H. G. Sockel, Mater. Sci. Eng. A-Struct. 87, 161 (1987).
  13. B. Chalmers, Physical Metallurgy, 445 (1959).
  14. H. M. Yun, P. J. Ennis, H. Nickel, and H. Schuster, J. Nucl. Mater. 125, 258 (1984). https://doi.org/10.1016/0022-3115(84)90553-1
  15. H. Singh, D. Puri, S. Prakash, and M. Srinivas, Anti-Corros. Method. M. 53, 283 (2006). https://doi.org/10.1108/00035590610692563