• Title/Summary/Keyword: capture velocity

Search Result 183, Processing Time 0.028 seconds

Spreading and Deposition Characteristics of a Water Droplet Impacting on Hydrophobic Textured Surfaces (소수성 텍스쳐 표면에 충돌한 단일 액적의 퍼짐 및 고착 특성)

  • Lee, Jae-Bong;Moon, Joo-Hyun;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • The present study conducts experimental investigation on spreading and deposition characteristics of a $4.3{\mu}l$ de-ionized (DI) water droplet impacting upon aluminum (Al 6061) flat and textured surfaces. The micro-textured surface consisted the micro-hole arrays (hole diameter: $125{\mu}m$, hole depth: $125{\mu}m$) fabricated by the conventional micro-computer numerical control (${\mu}$-CNC) milling machine process. We examined the surface effect of texture area fraction ${\varphi}_s$ ranging from 0 to 0.57 and impact velocity of droplet ranging from 0.40 m/s to 1.45 m/s on spreading and deposition characteristics from captured images. We used a high-speed camera to capture sequential images for investigate spreading characteristics and the image sensor to capture image of final equilibrium deposition droplet for analyze spreading diameter and contact angle. We found that the deposition droplet on textured surfaces have different wetting states. When the impact velocity is low, the non-wetting state partially exists, whereas over 0.64 m/s of impact velocity, totally wetting state is more prominent due to the increase kinetic energy of impinging droplet.

Study on the Affects of Mounting Axisymmetric Inlet to Airframe

  • Ando, Yohei;Matsuo, Akiko;Kojima, Takayuki;Maru, Yusuke;Sato, Tetsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.699-702
    • /
    • 2004
  • In this study, the affect of mounting axisymmetrical supersonic inlet to airfoil, which has 65 degree swept angle was numerically investigated. The parameter for this calculation are tree stream Mach number M=2.0 and 2.5, the distance between inlet spike and airfoil lower surface $L_{sw}$/$R_{cowl}$ = 1.21-1.54 and angle of attack to the airfoil 0-4. The mass capture ratio improved 3points in M=2.0 condition and 1points in M=2.5 while the mass capture ratio without airfoil surface was 57% and 71 % for each case. These are the result from increase of density and change of velocity deflection by the shock wave structure formed between inlet and airfoil surface. On the other hand, the distortion of Mach number at cowl lip plane increased by 13% in M=2.0, 3% in M=2.5 condition. The effects of the angle attack on the mass capture ratio is greater than that of the shock wave interaction between inlet and cowl, but the effects to the distortion is smaller in the range of this calculation condition. In the condition of M=2.0 with 4 degrees of angle of attack, inlet distortion of Mach number is mainly caused by the affects of the shock wave interaction between inlet and airfoil surface, while the largest angle of the velocity vector in the radial direction at cowl lip plane is caused by the affect of angle of attack. This large velocity vector made the flow inside the cowl subsonic and caused spillage, which interfere with the boundary layer of airfoil surface.

  • PDF

Theoretical Study on Magnetic Field Application for Fine Particle Capture

  • Huang, Shan;Park, Haewoo;Jo, Youngmin
    • Particle and aerosol research
    • /
    • v.10 no.2
    • /
    • pp.45-51
    • /
    • 2014
  • Fine particle capture is facing a challenge since traditional filtration which relies on the combination of impaction, interception, diffusion has a limited efficiency for fine particle capture particularly in size from 0.1 to $0.5{\mu}m$. This paper reviewed the collection efficiency of above mechanisms, as well as magnetic mechanisms for ferromagnetic particles, and mainly studied the influencing factors of magnetic filtration. Filtration velocity, magnetic field intensity and fiber size were found to be the most important parameters for magnetic filtration.

A Study on Improvement of Inhalation Efficiency of Hood in Ventilation System for Elimination of Industrial Dust (산업용 분진 제거를 위한 배기장치 내 후드의 흡입성능 개선에 관한 연구)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • The present study investigates on improvement of inhalation efficiency of hood in ventilation system for elimination of industrial dust. The hood, one of local exhaust ventilation system, has an important function to inhale a pollution source such as harmful dust and industrial waste. In this study, in order to improve the inhalation efficiency of the industrial hood, a new device named "gas-guide-device" was attached to inside of hood. The thermal fluid commercial code "Phoenics ver 3.1" was used to analyze the flow velocity distribution at the hood inlet and around the hood after gas-guide-device was installed. And the flow velocity on each position inside and around the hood was actually measured using the hot wire type anemometer under the same condition as that of numerical analysis. Also, in order to identify the optimum shape of gas-guide-device, numerical analysis and experiments are performed under various conditions and their results are presented. The results of this study revealed that the hood attached with gas-guide-device was higher the inhalation efficiency than that for without one and can be possible to improve the capture velocity of the industrial dust. And the optimum shape of gas-guide-device was identified that the ratio of two sizes of gas-guide-device, X to Y, has 4 to 6 on the basis of the hood size in use and the width (b) of gas-guide-device.

Evaluation of Capture Efficiencies of Push-Pull Hood Systems by Trace Gas Method under the Presence of Some Cross-draft (방해기류 존재시 추적자 가스법을 이용한 푸쉬풀 후드 효율 평가)

  • Kim, Tae-Hyeung;Ha, Hyun-Chul;Kang, Ho-Gyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.290-301
    • /
    • 2006
  • A push pull hood system is frequently applied to control contaminants evaporated from an open surface tank. Efficiency of push pull hood system is affected by various parameters, such as, cross draft, vessel shapes, tank surface area, liquid temperature. A previous work assisted by flow visualization technique qualitatively showed that a strong cross draft blown from the pull hood to push slot could destroy a stable wall-jet on the surface of tank, resulting in the abrupt escape of smoke from the surface. In this study, the tracer gas method was applied to determine the effect of cross-draft on the capture efficiency qualitatively. A new concept of capture efficiency was introduced, that is, linear efficiency. This can be determined by measuring the mass of tracer gas in the duct of pull hood while the linear tracer source is in between push slot and pull hood. By traversing the linear tracer source from the push slot to the pull hood, it can be found where the contaminant is escaped from the tank. Total capture efficiency can be determined by averaging the linear efficiencies. Under the condition of cross-draft velocities of 0, 0.4, 0.75, 1.05 and 1.47m/s, total capture efficiencies were measured as 97.6, 95.4, 94.6, 92.7 and 70.5% respectively. The abrupt reduction of efficiency with cross-draft velocity of 1.47m/s was due to the destruction of tank surface wall-jet by the counter-current cross-draft. The same phenomenon was observed in the previous flow visualization study. As an alternative to overcome this abrupt efficiency drop, the 20% increase of hood flow rates was tested, resulting in 20% efficiency increase.

Optimal path planning for the capturing of a moving object

  • Kang, Jin-Gu;Lee, Sang-Hun;Hwang, Cheol-Ho;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1419-1423
    • /
    • 2004
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Optimal path planning for the capturing of a moving object

  • Hwang, Cheol-Ho;Lee, Sang-Hun;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.186-190
    • /
    • 2003
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

A Model on a Bubbling Fluidized Bed Process for CO2 Capture from Flue Gas (연소기체로부터 CO2를 포집하는 기포 유동층 공정에 관한 모델)

  • Choi, Jeong-Hoo;Youn, Pil-Sang;Kim, Ki-Chan;Yi, Chang-Keun;Jo, Sung-Ho;Ryu, Ho-Jung;Park, Young-Cheol
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.516-521
    • /
    • 2012
  • This study developed a simple model to investigate effects of important operating parameters on performance of a bubbling-bed adsorber and regenerator system collecting $CO_2$ from flue gas. The chemical reaction rate was used with mean particles residence time of a reactor to determine the extent of conversion in both adsorber and regenerator reactors. Effects of process parameters - temperature, gas velocity, solid circulation rate, moisture content of feed gas - on $CO_2$ capture efficiency were investigated in a laboratory scale process. The $CO_2$ capture efficiency decreased with increasing temperature or gas velocity of the adsorber. However, it increased with increasing the moisture content of the flue gas or the regenerator temperature. The calculated $CO_2$ capture efficiency agreed to the measured value reasonably well. However the present model did not agree well to the effect of the solid circulation rate on $CO_2$ capture efficiency. Better understanding on contact efficiency between gas and particles was needed to interpret the effect properly.

Effect of Water Velocity on Foraging Behavior of Planktivore on Zooplankton in Aquatic Ecosystems (유속조건에 따른 수중 생태계내 소형어류의 동물플랑크톤 포식 행동 변화에 관한 연구)

  • Park, Bae Kyung;Park, Seok Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.79-83
    • /
    • 2005
  • Foraging behaviour of false dace, Pseudorasbora parva, was investigated in water flowing at various velocities with the existence of a cavity for rest. The pursuit comprised three succeeding processes such as, approaching, chasing and attacking. Angles between the fish body and the water flow direction and swimming speeds increased in the latter stages of approaching, chasing and attacking. All pursuit angles, swimming speeds and distances increased with flow velocity and peaked at the flow velocity of 7 cm/sec. At higher velocities, however, the fish avoided the use of much energy against the large drag force. The probability of capture and the feeding rate steadily decreased with increasing flow velocity. Under the fast flow, the fish adjusted their swimming speed to get the optimum velocity relative to the flowing water for the energetic budget. Fish spent more time in the cavity as flow velocity increased to avoid the energy expenditure necessitated by the high velocity.

A Fully-implicit Velocity Pressure coupling Algorithm-IDEAL and Its Applications

  • SUN, Dong-Liang;QU, Zhi-Guo;He, Ya-Ling;Tao, Wen-Quan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.1-13
    • /
    • 2008
  • An efficient segregated algorithm for the coupling of velocity and pressure of incompressible fluid flow, called IDEAL Inner Doubly-Iterative Efficient Algorithm for Linked-Equations), has been proposed by the present authors. In the algorithm there exist double inner iterative processes for pressure equation at each iteration level, which almost completely overcome two approximations in SIMPLE algorithm. Thus the coupling between velocity and pressure is fully guaranteed, greatly enhancing the convergence rate and stability of solution process. The performance of the IDEAL algorithm for three-dimensional incompressible fluid flow and heat transfer problems is analyzed and a systemic comparison is made between the algorithm and three other most widely-used algorithms (SIMPLER, SIMPLEC and PISO). It is found that the IDEAL algorithm is the most robust and the most efficient one among the four algorithms compared. This new algorithm is used for the velocity prediction of a new interface capturing method. VOSET, also proposed by the present author. It is found that the combination of VOSET and IDEAL can appreciably enhance both the interface capture accuracy and convergence rate of computations.

  • PDF