• Title/Summary/Keyword: capacity spectrum

Search Result 435, Processing Time 0.033 seconds

Management and rehabilitation of moderate-to-severe diabetic foot infection: a narrative review

  • Chi Young An;Seung Lim Baek;Dong-Il Chun
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.4
    • /
    • pp.343-351
    • /
    • 2023
  • Diabetic foot is one of the most devastating consequences of diabetes, resulting in amputation and possibly death. Therefore, early detection and vigorous treatment of infections in patients with diabetic foot are critical. This review seeks to provide guidelines for the therapy and rehabilitation of patients with moderate-to-severe diabetic foot. If a diabetic foot infection is suspected, bacterial cultures should be initially obtained. Numerous imaging studies can be used to identify diabetic foot, and recent research has shown that white blood cell single-photon emission computed tomography/computed tomography has comparable diagnostic specificity and sensitivity to magnetic resonance imaging. Surgery is performed when a diabetic foot ulcer is deep and is accompanied by bone and soft tissue infections. Patients should be taught preoperative rehabilitation before undergoing stressful surgery. During surgical procedures, it is critical to remove all necrotic tissue and drain the inflammatory area. It is critical to treat wounds with suitable dressings after surgery. Wet dressings promote the formation of granulation tissues and new blood vessels. Walking should begin as soon as the patient's general condition allows it, regardless of the wound status or prior walking capacity. Adequate treatment of comorbidities, including hypertension and dyslipidemia, and smoking cessation are necessary. Additionally, broad-spectrum antibiotics are required to treat diabetic foot infections.

Synthesis of Aminated Poly(ether sulfone) as Anion Exchanger and its NO Gas Adsorption (Aminated Poly(ether sulfone)의 합성과 NO 가스의 흡착특성)

  • Son, W.K.;Park, S.G.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.857-862
    • /
    • 1999
  • Aminated poly(ether sulfone)(APES) was prepared by amination of nitrated poly(ether sulfone)(NPES) after poly(ether sulfone)(PES) was nitrated with mixed acid of nitric acid and sulfuric acid(sulfuric acid is a catalyst). As a results of the FT-IR spectrum analysis, the nitration of PES was confirmed by the bands of asymmetric stretching and symmetric stretching of $NO_2$ group at 1537 and $1351cm^{-1}$, respectively. Also when the NPES was aminated, it was disappeared to absorbance peaks of $NO_2$ group. And It was confirmed by the bands of asymmetric stretching and symmetric stretching of $NH_2$ group at 3470 and $3374cm^{-1}$, respectively. The optimum condition of the nitration on PES(5 g; 21.55 mmol.) was 12 hr of reaction time, $120^{\circ}C$ of reaction temperature, nitric acid of 28.00 mmol. and sulfuric acid of 52.00 mmol. As a result of the elemental analysis of APES, reapeating unit per amine groups were induced to 0.89. The adsorption rate of NO gas was lower than that of silica gel and active carbon. But the adsorption capacity of NO gas was higher than that of these. When the APES was absorbed to NO gas, the chemical adsorption rate was lower than the physical adsorption rate. But the chemical adsorption capacity of it was higher than physical adsorption capacity.

  • PDF

Characterization of Humic and Fulvic Acids Extracted from Soils in Different Depth: Proton Exchange Capacity, Elemental Composition and 13C NMR Spectrum (깊이별 토양 휴믹산과 풀빅산의 특성 분석: 양성자교환용량, 원소성분비, 13C NMR 스펙트럼)

  • Shin, Hyun-Sang;Lee, Chang-Hoon;Rhee, Dong-Sock;Chung, Kun-Ho;Lee, Chang-Woo
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.283-291
    • /
    • 2003
  • Humic and fulvic acids present in soils of different depth were extracted and their acidic functional groups and structural characteristics were analyzed and compared. The purpose of this study was to present a basic data needed to evaluate the effect of humic substances on depth distribution and migrational behaviour of radioactive elements deposited on soil. Acidic functional groups of the humic and fulvic acids were analyzed by pH titration method, and their proton exchange capacity (PEC, $mq\;g^{-1}$) and average $pK_a$ values were obtained. Structural characteristics of the humic and fulvic acids were analyzed using their CPMAS $^{13}C$ NMR spectra and elemental composition data. pH titration data showed that fulvic acids have higher acidic functional group contents ranging from 5.5 to $7.0meq\;g^{-1}$ compared with that of humic acids ($3.8{\sim}4.8meq\;g^{-1}$). From depth profiles, it has been found that PEC values of humic acids in deeper soil (> 8 cm) were higher than those at the surface soils. Elemental compositions (H/C ratio) and spectral features ($C_{arom}/C_{aliph}$ ratio) obtained from CPMAS $^{13}C$ NMR spectra showed that the aromatic character in humic acids was a relatively higher than that of fulvic acids, while lower in carboxyl carbon content. The aromatic character and carboxyl carbon contents of humic acids tend to increase as soil depth increased, but those of fulvic acid showed little differences by the soil depth range.

A Comparative Study on Physiological Characters Between the Cultivar and Wild Plant in Amaranthus sp. (비름과(科)(Amaranthus sp.) 식물(植物)의 재배종(栽培種)과 야생종간(野生種間)의 생리학적(生理學的) 특성비교(特性比較))

  • Cheong, Jang Hee;Choi, Kwan Sam
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.38-50
    • /
    • 1987
  • The purpose of this comparative study is to investigate the differences of growth behaviors (height, weight, yield capacities etc.) and germination characters (induced photo-dormancy) among the three different species of Arnaranthus sp. The results obtained are summarized as follows. The growth of the cultivar of A.hypochondriacus was more vigor than that of the wild plant of A.retroflexus during the whole life cycle. The fresh weight, dry weight, yield capacity of A.hypochondriacus were much more higher than those of the others two species (A.retroflexus and A.Cruenthus). There are very different germinability formation and induced dormancy patterns between the cultivar and wild plant during seed formation periods. The cultivar of A.hypochondriacus was not induced primary dormancy in the any seed formation stages but wild plant of A.retroflexus was induced deep true dormancy. We suggested that these differences occured by the sum of different absorption of solar energy spectrum by the different seed colors between the cultivar (white color seed) and wild (black seed). And we confirmed the different absorption spectrum of the three different Arnaranthus sp. seeds.

  • PDF

A Study on Seismic Capacity Assessment of Long-Span Suspension Bridges by Construction Methods Considering Earthquake Characteristics (지진특성을 고려한 장경간 현수교량의 시공방안별 내진성능 평가에 관한 연구)

  • Han, Sung Ho;Jang, Sun Jae;Lim, Nam Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.93-102
    • /
    • 2010
  • The numerical analysis and safety assessment by construction stages were considered the essential examination particular in order to solving the unstability of long-span bridges in the middle a construction. When estimating structural response characteristics by the construction stage analysis of long-span bridges, the influence of the near-field ground motion (NFGM) would be evaluated as a critical factor for the seismic design because it indicates clearly different aspects from the existing input earthquake motion data. Therefore, this study re-examined the response aspect of long-span bridges considering NFGM characteristics based on the response spectrum result, and advanced the presented numerical analysis program by the related research for conducting the construction stage analysis and reliability assessment of long-span bridges efficiently. The excellency of various construction schemes was assessed using the time history analysis result of critical member considering NFGM characteristics. For evaluating quantitative safety level, the reliability analysis was conducted considering the influence of external uncertainties included in random variables, and presented the safety index and failure probability of the critical construction stage by NFGM characteristics. In addition, the reliability result was examined the influence of internal uncertainties using monte carlo simulation (MCS), and assessed the distribution aspect of the essential analysis result. It is expected that this study will provide the basic information for the construction safety improvement when performing seismic design of long-span bridges considering NFGM characteristics.

Seismic Response Analysis and Performance Evaluation of Wind-Designed Concentrically Braced Steel Highrise Buildings under Moderate Seismicity (중진대의 지진환경하에서 내풍설계된 초고층 철골조 중심가새골조의 지진응답해석 및 내진성능평가)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.33-42
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall builidng, the probable structural impact of the 500-year design basis earthquake (DBE) or the 2400-year maximum credible earthquake (MCE) on the selected structural system should be considered at least in finalizing the design. In this study, seismic performance evaluation was conducted for concentrically braced steel highrise buildings that were only designed for wind by following the assumed domestic design practice. It was found that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seimsic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. The strength demand-to-strength capacity study based on the response spectrum analysis revealed that, due to the system overstrength factors mentioned above, wind-designed concentrically braced steel highrise buildings having a slenderness ratio of larger than six can withstand elastically even the maximum credible earthquake at the performance level of immediate occupancy.

Experimental Study of a Seismic Reinforcing System without Power Interruption and Movement for Electric Panel on the Access Floor (무정전-무이설 방식의 전기판넬 내진보강시스템 시험연구)

  • Jang, Jung-Bum;Lee, Jong-Rim;Hwang, Kyeong-Min;Ham, Kyung-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.1-10
    • /
    • 2009
  • The seismic reinforcing system is developed to prevent damage to electric panels which are installed on the access floor and are essential to the operation of various basic facilities such as electric power and communication etc., from earthquakes. The seismic capacity of seismic reinforcing system is verified through the shaking table test. The seismic reinforcing system is intended for the electric panel on the access floor, and installation is possible without movement and power interruption of the electric panel. The enveloped response spectrum is adopted considering the location of the electric panel in the building as input motion for the shaking table test. The shaking table tests are carried out with two electric panels that can be considered representative of general electric panels, and two types of access floors such as wood panel and steel panel, which are commonly used in the industrial field. As a result of tests, it is confirmed that the seismic reinforcing system secures the seismic safety of electric panels by preventing the overturning of electric panels during and after the shaking table tests. In the event that the seismic reinforcing system is applied to the electric panel on the access floor, damage to the electric panel from an earthquake can be effectively prevented, which can greatly contribute to the stable operation of domestic basic facilities.

Seismic structural demands and inelastic deformation ratios: a theoretical approach

  • Chikh, Benazouz;Mebarki, Ahmed;Laouami, Nacer;Leblouba, Moussa;Mehani, Youcef;Hadid, Mohamed;Kibboua, Abderrahmane;Benouar, Djilali
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • To estimate the structural seismic demand, some methods are based on an equivalent linear system such as the Capacity Spectrum Method, the N2 method and the Equivalent Linearization method. Another category, widely investigated, is based on displacement correction such as the Displacement Coefficient Method and the Coefficient Method. Its basic concept consists in converting the elastic linear displacement of an equivalent Single Degree of Freedom system (SDOF) into a corresponding inelastic displacement. It relies on adequate modifying or reduction coefficient such as the inelastic deformation ratio which is usually developed for systems with known ductility factors ($C_{\mu}$) and ($C_R$) for known yield-strength reduction factor. The present paper proposes a rational approach which estimates this inelastic deformation ratio for SDOF bilinear systems by rigorous nonlinear analysis. It proposes a new inelastic deformation ratio which unifies and combines both $C_{\mu}$ and $C_R$ effects. It is defined by the ratio between the inelastic and elastic maximum lateral displacement demands. Three options are investigated in order to express the inelastic response spectra in terms of: ductility demand, yield strength reduction factor, and inelastic deformation ratio which depends on the period, the post-to-preyield stiffness ratio, the yield strength and the peak ground acceleration. This new inelastic deformation ratio ($C_{\eta}$) is describes the response spectra and is related to the capacity curve (pushover curve): normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), natural period (T), peak ductility factor (${\mu}$), and the yield strength reduction factor ($R_y$). For illustrative purposes, instantaneous ductility demand and yield strength reduction factor for a SDOF system subject to various recorded motions (El-Centro 1940 (N/S), Boumerdes: Algeria 2003). The method accuracy is investigated and compared to classical formulations, for various hysteretic models and values of the normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), and natural period (T). Though the ductility demand and yield strength reduction factor differ greatly for some given T and ${\eta}$ ranges, they remain take close when ${\eta}>1$, whereas they are equal to 1 for periods $T{\geq}1s$.

Estimation of Storage Capacity using Topographical Shape of Sand-bar and High Resolution Image in Urban Stream (도시하천의 지형태 자료와 영상정보를 이용한 수체적 시험평가)

  • Lee, Hyun Seok;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.445-450
    • /
    • 2008
  • Recently, environmental and ecological approaches is in progress in urban stream, especially the guarantee of instream flow becomes very important. In this paper, it is suggested that water volume estimation method utilizing the topographical shape data obtained by field investigation and satellite image to manage the urban stream efficiently. The data obtained at Gap River is the study area are analysed and those results are as belows. First, surveying to investigate topographic shape characteristics of urban stream is carried out. In details, the gradient characteristics from water surface to bottom in case of sand area and in case of grass area are 0.013 and 0.065 respectively. In conclusion, the gradient characteristic of grass area is five times bigger than that of sand area. Besides, IKONOS image is classified by spectrum analysis and Minimum Distance Method and the sand area extraction method by the generalization method as Median filter is suggested to calculate water volume. Finally, mapping process on the sand area extracted from the topographical shape field data in river and satellite images is carried out by the GIS spatial analysis. And on the assumption that the water level was 1m at that time when satellite image was taken, the water volume was $225,258m^3$. It is clarified that the effect of water volume improvement was about 10.5% in comparison with water volume that had no consideration on the gradient characteristics of sand-bar.

Revaluation of Inelastic Structural Response Factor for Seismic Fragility Evaluation of Equipment (기기의 지진취약도 평가를 위한 구조물 비탄성구조응답계수의 재평가)

  • Park, Junhee;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • There are a lot of equipment related to safety and electric power production in nuclear power plants. The structure and equipment in NPPs were generally designed considering a high safety factor to remain in the elastic zone under earthquake load. However it is needed to revaluate the seismic capacity of the structure and equipment as the magnitude of earthquake was recently increased. In this study the floor response due to the nonlinear behaviors of structure was analyzed and the inelastic structural response factor was calculated by the nonlinear time history analysis. The inelastic structural response factor was calculated by the EPRI method and the nonlinear analysis method to realistically evaluate the seismic fragility for the equipment. According to the analysis result, it was represented that the inelastic structural response factor was affected by the natural frequency of equipment, the location of equipment and the dynamic property of structure.