• Title/Summary/Keyword: capacity models

Search Result 1,537, Processing Time 0.029 seconds

Performance Based Seismic Design of Apartment Houses by Applying Seismic Rebar (공동주택의 성능기반설계 시 내진철근의 영향평가)

  • Jo, Min-Joo;Yu, Seong-Yong;Kang, Ji-Yeon;Kim, Hyung-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.115-122
    • /
    • 2017
  • In this study, performance based seismic design was performed on the shear wall structural system and the beam-column system as a variable general rebar and seismic rebar, and comparing the capacity of the two models of each system. From nonlinear analyses, the capacity of the shear wall structural system applying seismic rebar has shown a stable behavior after the maximum strength, but there is little difference. Furthermore, both models showed similar capacity between story drift and story shear force and capacity of members. These results are attributed to the fact that the seismic rebar, which is highly ductile under the seismic load applied to the target structure, does not render sufficient capacity.

A Perceptually-Adaptive High-Capacity Color Image Watermarking System

  • Ghouti, Lahouari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.570-595
    • /
    • 2017
  • Robust and perceptually-adaptive image watermarking algorithms have mainly targeted gray-scale images either at the modeling or embedding levels despite the widespread availability of color images. Only few of the existing algorithms are specifically designed for color images where color correlation and perception are constructively exploited. In this paper, a new perceptual and high-capacity color image watermarking solution is proposed based on the extension of Tsui et al. algorithm. The $CIEL^*a^*b^*$ space and the spatio-chromatic Fourier transform (SCFT) are combined along with a perceptual model to hide watermarks in color images where the embedding process reconciles between the conflicting requirements of digital watermarking. The perceptual model, based on an emerging color image model, exploits the non-uniform just-noticeable color difference (NUJNCD) thresholds of the $CIEL^*a^*b^*$ space. Also, spread-spectrum techniques and semi-random low-density parity check codes (SR-LDPC) are used to boost the watermark robustness and capacity. Unlike, existing color-based models, the data hiding capacity of our scheme relies on a game-theoretic model where upper bounds for watermark embedding are derived. Finally, the proposed watermarking solution outperforms existing color-based watermarking schemes in terms of robustness to standard image/color attacks, hiding capacity and imperceptibility.

Pile bearing capacity prediction in cold regions using a combination of ANN with metaheuristic algorithms

  • Zhou Jingting;Hossein Moayedi;Marieh Fatahizadeh;Narges Varamini
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.417-440
    • /
    • 2024
  • Artificial neural networks (ANN) have been the focus of several studies when it comes to evaluating the pile's bearing capacity. Nonetheless, the principal drawbacks of employing this method are the sluggish rate of convergence and the constraints of ANN in locating global minima. The current work aimed to build four ANN-based prediction models enhanced with methods from the black hole algorithm (BHA), league championship algorithm (LCA), shuffled complex evolution (SCE), and symbiotic organisms search (SOS) to estimate the carrying capacity of piles in cold climates. To provide the crucial dataset required to build the model, fifty-eight concrete pile experiments were conducted. The pile geometrical properties, internal friction angle 𝛗 shaft, internal friction angle 𝛗 tip, pile length, pile area, and vertical effective stress were established as the network inputs, and the BHA, LCA, SCE, and SOS-based ANN models were set up to provide the pile bearing capacity as the output. Following a sensitivity analysis to determine the optimal BHA, LCA, SCE, and SOS parameters and a train and test procedure to determine the optimal network architecture or the number of hidden nodes, the best prediction approach was selected. The outcomes show a good agreement between the measured bearing capabilities and the pile bearing capacities forecasted by SCE-MLP. The testing dataset's respective mean square error and coefficient of determination, which are 0.91846 and 391.1539, indicate that using the SCE-MLP approach as a practical, efficient, and highly reliable technique to forecast the pile's bearing capacity is advantageous.

The Relationship of Absorptive Capacity, Business Model of Blockchain Technology, and Performance in Korean Logistics' Firms

  • Kim, Seong Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.201-211
    • /
    • 2021
  • In this paper, we propose that logistics companies will have different business models when using blockchain technology. In addition, it intends to understand the difference in absorptive capacity and performance of logistics companies using blockchain technology. In order to achieve this research objective, this study conducted a survey on logistics companies and analyzed the collected data. Cluster analysis was performed to understand the business model, and ANOVA was performed to understand the significance of cluster analysis. The difference in absorptive capacity and performance was analyzed according to the business model identified through cluster analysis. In addition, PLS analysis was conducted to determine the difference in absorption capacity and performance. The results show that logistics companies have different types of business models in adopting blockchain technology. Logistics companies groups with high degree of development of business models showed high results in terms of absorption capacity and performance level.

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

Development of Farm Size Dairy Feedmill System in Korea(I) -Development of the TMR Terminal- (우리나라의 낙농단지규모에 알맞는 사료가공시설의 모델개발(I) -TMR 터미널의 모델 개발-)

  • Park, K.K.;Kim, T.W.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.4
    • /
    • pp.329-342
    • /
    • 1994
  • In order to reduce the production cost and improve the quality of dairy feed, several dairy feed mill models suitable for Korean farm size were developed. 6 TMR models were developed for the 1000, 600, 200 head of dairy cattle, and evaluated for capital investments and production costs to suggest the best model. Followings are summary of this study : 1. TMR terminal models were designed that dairy production capacity of TMR1000 models are 40 ton/day, TMR600 model is 20 ton/day and TMR200 models are 10 ton/day. Also, they can be extended their capacity up to twice. 2. Capital investment of TMR terminal models is 145 million won for TMR200-1,205 million won for TMR600 and 609 million won for TMR1000-3 model. 3. The bigger TMR terminal model has the more advantage in production cost. The best model for 1000 head of dairy cattle farm was TMR1000-3 with 10,849 won/ton of production cost, TMR600 for 600 head of dairy cattle farm with 13,829 won/ton, TMR200-1 for 200 head of dairy cattle farm with 16,943 won/ton of production cost, so feed production cost for the 200 head farm was 50% higher than 1,000 head size farm.

  • PDF

Rotational capacity of shallow footings and its implication on SSI analyses

  • Blandon, Carlos A.;Smith-Pardo, J. Paul;Ortiz, Albert
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.591-617
    • /
    • 2015
  • Standards for seismic assessment and retrofitting of buildings provide deformation limit states for structural members and connections. However, in order to perform fully consistent performance-based seismic analyses of soil-structure systems; deformation limit states must also be available for foundations that are vulnerable to nonlinear actions. Because such limit states have never been established in the past, a laboratory testing program was conducted to study the rotational capacity of small-scale foundation models under combined axial load and moment. Fourteen displacement-controlled monotonic and cyclic tests were performed using a cohesionless soil contained in a $2.0{\times}2.0{\times}1.2m$ container box. It was found that the foundation models exhibited a stable hysteretic behavior for imposed rotations exceeding 0.06 rad and that the measured foundation moment capacity complied well with Meyerhof's equivalent width concept. Simplified code-based soil-structure analyses of an 8-story building under an array of strong ground motions were also conducted to preliminary evaluate the implication of finite rotational capacity of vulnerable foundations. It was found that for the same soil as that of the experimental program foundations would have a deformation capacity that far exceeds the imposed rotational demands under the lateral load resisting members so yielding of the soil may constitute a reliable source of energy dissipation for the system.

Flexural bearing capacity of diaphragm-through joints of concrete-filled square steel tubular columns

  • Rong, Bin;Liu, Rui;Zhang, Ruoyu;Chen, Zhihua;Apostolos, Fafitis
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.487-500
    • /
    • 2016
  • In order to investigate the flexural bearing capacity of panel zone of diaphragm-through joint between concrete filled square steel tubular column and steel beam, four specimens were tested under static tension loads to study the mechanical properties and bearing capacity of diaphragm-through joints with a failure mode of panel zone. Finite element models of these specimens were developed to simulate the test and compare the predicted failure modes, load-displacement curves and bearing capacities with the experimentally observed. It was found that the tensile load from the steel beam flange is mainly shared by the square steel tube and the diaphragm. The diaphragm plastic zone appears along the cross-section lines enclosed by the square steel tube and the influence of steel beam web on the plastic zone of the steel tube is significant and cannot be neglected. Computational models of yield lines on square steel tube and diaphragm are established based on the distribution pattern of the plastic zone, and an analytical method for the evaluation of the bearing capacity of the joint is proposed. The theoretical results and the experimental data are compared and found in good agreement.

Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs

  • Wang, Jiajia;Chen, Xudong;Bu, Jingwu;Guo, Shengshan
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.283-293
    • /
    • 2019
  • The limited availability of raw materials and increasing service demands for pavements pose a unique challenge in terms of pavement design and concrete material selection. The self-compacting rubberized concrete (SCRC) can be used in pavement design. The SCRC pavement slab has advantages of excellent toughness, anti-fatigue and convenient construction. On the premise of satisfying the strength, the SCRC can increase the ductility of pavement slab. The aim of this investigation is proposing a new method to predict the crack growth and flexural capacity of large-scale SCRC slabs. The mechanical properties of SCRC are obtained from experiments on small-scale SCRC specimens. With the increasing of the specimen depth, the bearing capacity of SCRC beams decreases at the same initial crack-depth ratio. By constructing extended finite element method (XFEM) models, crack growth and flexural capacity of large-scale SCRC slabs with different fracture types and force conditions can be predicted. Considering the diversity of fracture types and force conditions of the concrete pavement slab, the corresponding test was used to verify the reliability of the prediction model. The crack growth and flexural capacity of SCRC slabs can be obtained from XFEM models. It is convenient to conduct the experiment and can save cost.

Capacity Expansion Models for Optimum Investment Planning (최적(最適) 투자정책(投資政策)을 위한 시설(施設) 확충(擴充)(Capacity Expansion) 모델의 문헌적(文獻的) 고찰(考察))

  • Kim, Seung-Gwon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.2
    • /
    • pp.141-154
    • /
    • 1985
  • The capacity expansion problem has been defined. Existing literatures on capacity expansion problems have been reviewed and unified under a structure of problem domain. The problem domain has been defined by three relavent coordinates; function or objective of the project, consideration of resource allocation, and consideration of project sequencing. Long range planning is of vital importance in setting up ultimately efficient capital investment plans to meet immediate demand increase. Simplified expansion sequencing example problems have been introduced and solved to help understanding of a solution scheme.

  • PDF