• Title/Summary/Keyword: capacitive electrode

Search Result 168, Processing Time 0.029 seconds

Fundamental Study of CNTs Fabrication for Charge Storable Electrode using RF-PECVD System

  • Jung, Ki-Young;Kwon, Hyuk-Moon;Ahn, Jin-Woo;Lee, Dong-Hoon;Park, Won-Zoo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.8-13
    • /
    • 2009
  • Plasma enhanced chemical vapor deposition (PECVD) is commonly used for Carbon nanotubes (CNTs) fabrication, and the process can easily be applied to industrial production lines. In this works, we developed novel magnetized radio frequency PECVD system for one line process of CNTs fabrication for charge storable electrode application. The system incorporates aspects of physical and chemical vapor deposition using capacitive coupled RF plasma and magnetic confinement coils. Using this magnetized RF-PECVD system, we firstly deposited Fe layer (about 200[nm]) on Si substrate by sputter method at the temperature of 300[$^{\circ}$] and hence prepared CNTs on the Fe catalyst layer and investigated fundamental properties by scanning electron microscopy (SEM) and Raman spectroscopy (RS). High-density, aligned CNTs can be grown on Fe/Si substrates at the temperature of 600[$^{\circ}$] or less.

Layer-by-Layer Self-Assembled Multilayer Film Composed of Polyaniline, Graphene Oxide, and Phytic Acid for Supercapacitor Application (슈퍼커패시터 활용성 자가조립된 폴리아닐린, 그래핀 옥사이드 그리고 피트산으로 구성된 다층 초박막)

  • Lee, Myungsup;Hong, Jong-Dal
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.1
    • /
    • pp.36-44
    • /
    • 2015
  • This article describes synthesis and electrochemical properties of layer-by-layer self-assembled multilayer film composed of polyaniline (PANi), graphene oxide (GO) and phytic acid (PA), whereby the GO was electrochemically reduced to ERGO, resulting in $(PANi/ERGO/PANi/PA)_{10}$ film electrode. Especially, we examined the possibility to improve the volumetric capacitive property of $(PANi/ERGO)_{20}$ film electrode via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film that would dope PANi properly and also increase the porosity and surface area of the electrode. The electrochemical performances of the multilayer film electrodes were investigated using a three-electrode configuration in 1 M $H_2SO_4$ electrolyte. As a result, the $(PANi/ERGO)_{20}$ electrode showed the volumetric capacitance of $666F/cm^3$ at a current density of $1A/cm^3$, which was improved to the volumetric capacitance of $769F/cm^3$ for the $(PANi/ERGO/PANi/PA)_{10}$ electrode, in addition to the cycling stability maintained to 79.3% of initial capacitance after 1000 cycles. Thus, the electrochemical characteristics of the $(PANi/ERGO)_{20}$ electrode, which was densely packed by ${\pi}-{\pi}$ stacking between the electron-rich conjugate components, could have been improved through structural modification of the multilayer film via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film.

Design of Output Buffer Circuits for PDP Data Drivers (PDP 데이터 드라이버를 위한 출력회로 설계)

  • Yoon, Seok-Jeong;Kwag, Pyong-Su;Lee, Seung-Yong;Choi, Byong-Deok;Kwon, Oh-Kyong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.743-746
    • /
    • 2005
  • This paper proposes a novel structure of output buffer circuits for PDP data drivers. The proposed circuit is free from capacitive coupling effect from the output electrode and suppresses the short circuit currents, which improves the current driving capability and reduces the power consumption.

  • PDF

A Gap Sensor Design for Precision Stage (초정밀 스테이지용 변위 센서)

  • 김일해;김종혁;장동영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.453-458
    • /
    • 2004
  • A capacitate sensor is a proper device for measuring high small displacement. General design parameters and procedure are discussed and a test sensor was built to have a measuring range of 100$\mu\textrm{m}$ and a sensitivity about 30nm. This sensor has too opposing electrode of comparably large area and has nominal gap distance about 150$\mu\textrm{m}$. So as to achieve a nano order displacement sensitivity, both sensor and target system have to be considered. This is important for the sensitivity can be achieved by minimizing a system total noise level in electronic type sensor application. Typical performance of the developed sensor is demonstrated in precision moving stage having 0.1$\mu\textrm{m}$ moving resolution.

  • PDF

Thin Film Magnetostriction and Young's Modulus Measurement (박막의 자왜 및 영율 측정)

  • 이용호;신용돌;허복희;이금휘;김희중;한석희;강일구
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.168-172
    • /
    • 1994
  • This paper reports a method measuring magnetostriction, Young's moduli of a substrate and film and ${\Delta}\;E$-effect with one apparatus. A substrate deposited with a thin magnetic film is parallely cantilevered paraIled to a metal plate electrode, forming a capacitive cell. The cantilever deflects due to own weight, applied electric and magnetic filed. The smaIl change of the capacitance caused by this deflection is measured by a sensitive capaci-tance bridge. Young's modulus, magnetostriction and ${\Delta}\;E$ effect can be calculated by theoretical analysis with the weight, applied field and deflection data.

  • PDF

High frequency partial discharge measurement by metal foil electrode (박전극을 이용한 고주파 부분방전 측정 연구)

  • Kim, C.S.;Shin, D.S.;Lee, C.Y.;Kim, J.N.;Baek, J.H.;Kim, D.W.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1081-1083
    • /
    • 1999
  • The capacitive coupling technique has been used as conventional method for PD detection on the power cable line. Recently, however PD measurement using by high frequency is known to have an excellent sensitivity comparison with low frequency on-site. In this paper, the high frequency characteristic of two type of metal foil sensor was studied and the technique was proved to be more effective diagnostic method than conventional method for qualification of EHV cable and accessories.

  • PDF

Electrochemical characterization of supercapacitors based on carbons derived from Sorona activated by ZnCl2

  • Jisha, M.R.;Christy, Maria;Kim, Ae Rhan;Nahm, Kee Suk;Yoo, Dong Jin
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.309-314
    • /
    • 2012
  • Carbons derived by the pyrolysis of Sorona activated by $ZnCl_2$ in the ratio of 1:20 and non-porogen Sorona carbons are used as the electrode materials in asymmetric electrochemical supercapacitors and electrochemical behavior is investigated. Scanning electron microscopy (SEM) reveals the porogen free carbons show a flake-like structure and the $ZnCl_2$-treated Sorona carbons have a loose, disjoint structure without any particular shape. Cyclic voltammetric (CV) studies show specific prolate rectangular shape and gives good capacitive properties.

After-glows in $N_2$ RF Flowing Plasma

  • Lee, Min-Uk;O, Su-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.489-489
    • /
    • 2012
  • The vibrational distribution of $N_2$ (B, v') in after-glows in $N_2$ RF flowing plasma was investigated. The optical emission of the after-glow was studied as function of distance from plasma. In a tube 2.1 cm, the gas pressure varied 8 Torr with 1000sccm nitrogen gas flowing late.. The discharges were excited by two ring-electrode powered by RF 13.56 MHz 100 Watt. $N_2$ (B, v') vibrational distribution was analyzed to see depends of position in after-glow. Dissociation rate of $N_2$ varied showing maximum in the late after-glow region. We studied $N_2$ RF capacitive flowing plasmas and afterglows by emission spectroscopy and by NO titration to determine the density of N-atoms.

  • PDF

The Preparation of Non-aqueous Supercapacitors with Lithium Transition-Metal Oxide/Activated Carbon Composite Positive Electrodes

  • Kim, Kyoung-Ho;Kim, Min-Soo;Yeu, Tae-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3183-3189
    • /
    • 2010
  • In order to increase the specific capacitance and energy density of supercapacitors, non-aqueous supercapacitors were prepared using lithium transition-metal oxides and activated carbons as active materials. The electrochemical properties were analyzed in terms of the content of lithium transition-metal oxides. The results of cyclic voltammetry and AC-impedance analyses showed that the pseudocapacitance may stem from the synergistic contributions of capacitive and faradic effects; the former is due to the electric double layer which is prepared in the interface of activated carbon and organic electrolyte, and the latter is due to the intercalation of lithium ($Li^+$) ions. The specific capacitance and energy density of a supercapacitor improved as the lithium transition-metal oxides content increased, showing 60% increase compared to those of supercapacitor using a pure activated carbon positive electrode.

Demonstration of Alternative Fabrication Techniques for Robust MEMS Device

  • Chang, Sung-Pil;Park, Je-Young;Cha, Doo-Yeol;Lee, Heung-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.184-188
    • /
    • 2006
  • This work describes efforts in the fabrication and testing of robust microelectromechanical systems (MEMS). Robustness is typically achieved by investigating non-silicon substrates and materials for MEMS fabrication. Some of the traditional MEMS fabrication techniques are applicable to robust MEMS, while other techniques are drawn from other technology areas, such as electronic packaging. The fabrication technologies appropriate for robust MEMS are illustrated through laminated polymer membrane based pressure sensor arrays. Each array uses a stainless steel substrate, a laminated polymer film as a suspended movable plate, and a fixed, surface micromachined back electrode of electroplated nickel. Over an applied pressure range from 0 to 34 kPa, the net capacitance change was approximately 0.14 pF. An important attribute of this design is that only the steel substrate and the pressure sensor inlet is exposed to the flow; i.e., the sensor is self-packaged.