Browse > Article
http://dx.doi.org/10.5012/jkcs.2015.59.1.36

Layer-by-Layer Self-Assembled Multilayer Film Composed of Polyaniline, Graphene Oxide, and Phytic Acid for Supercapacitor Application  

Lee, Myungsup (Department of Chemistry, Research Institute of Basic Sciences, Incheon National University)
Hong, Jong-Dal (Department of Chemistry, Research Institute of Basic Sciences, Incheon National University)
Publication Information
Abstract
This article describes synthesis and electrochemical properties of layer-by-layer self-assembled multilayer film composed of polyaniline (PANi), graphene oxide (GO) and phytic acid (PA), whereby the GO was electrochemically reduced to ERGO, resulting in $(PANi/ERGO/PANi/PA)_{10}$ film electrode. Especially, we examined the possibility to improve the volumetric capacitive property of $(PANi/ERGO)_{20}$ film electrode via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film that would dope PANi properly and also increase the porosity and surface area of the electrode. The electrochemical performances of the multilayer film electrodes were investigated using a three-electrode configuration in 1 M $H_2SO_4$ electrolyte. As a result, the $(PANi/ERGO)_{20}$ electrode showed the volumetric capacitance of $666F/cm^3$ at a current density of $1A/cm^3$, which was improved to the volumetric capacitance of $769F/cm^3$ for the $(PANi/ERGO/PANi/PA)_{10}$ electrode, in addition to the cycling stability maintained to 79.3% of initial capacitance after 1000 cycles. Thus, the electrochemical characteristics of the $(PANi/ERGO)_{20}$ electrode, which was densely packed by ${\pi}-{\pi}$ stacking between the electron-rich conjugate components, could have been improved through structural modification of the multilayer film via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film.
Keywords
Supercapacitor; Layer-by-layer self-assembly; Tetra-layered film; Chemical reduction; Ultrathin film fabrication;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, L.; Raji, A. R. O.; Fei, H.; Yang, Y.; Samuel, E. L. G.; Tour, J. M. ACS appl. Mater. Interfaces, 2013, 5, 6622.   DOI
2 Liu, M. C.; Kong, L. B.; Lu, C.; Li, X. M.; Luo, Y. C.; Kang, L. RSC Adv. 2012, 2, 1890.   DOI
3 Sarker, A. K.; Hong, J. D. Colloids Surf. A, 2013, 436, 967.   DOI
4 Wee, B. H.; Hong, J. D. Langmuir, 2014, 30, 5267.   DOI
5 Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano, 2010, 4, 1963.   DOI
6 Khoh, W. H.; Hong, J. D. Colloids Surf. A, 2013, 436, 104.   DOI
7 Tong, Z.; Yang, Y.; Wang, J.; Zhao, J.; Su, B. L.; Li, Y. J. Mater. Chem. A, 2014, 2, 4642.   DOI
8 Chen, W.; Rakhi, R. B.; Alshareef, H. N. J. Mater. Chem. A, 2013, 1, 3315.   DOI
9 Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Nano Lett. 2014, 14, 2522.   DOI
10 Dong, X.; Wang, L.; Wang, D.; Li, C.; Jin, J. Langmuir, 2012, 28, 293.   DOI
11 Shahid, M.; Yesibolati, N.; Reuter, M. C.; Ross, F. M.; Alshareef, H. N. J. Power Sources, 2014, 263, 239.   DOI
12 Saetia, K.; Schnorr, J. M.; Mannarino, M. M.; Kim, S. Y.; Rutledge, G. C.; Swager, T. M.; Hammond, P. T. Adv. Funct. Mater. 2014, 24, 492.   DOI
13 Hyder, M. N.; Lee, S. W.; Cebeci, F. C.; Schmidt, D. J.; Horn, Y. S.; Hammond, P. T. ACS Nano, 2011, 5, 8552.   DOI   ScienceOn
14 Zhao, Y.; Liu, B.; Pan, L.; Yu, G. Energy. Environ. Sci. 2013, 6, 2856.   DOI
15 Zhou, L.; Chen, M.; Tian, L.; Guan, Y.; Zhang, Y. ACS Appl. Mater. Interfaces, 2013, 5, 3541.   DOI
16 Wohl, B. M.; Engbersen, J. F. J. J. Control. Release, 2012, 158, 2.   DOI
17 Chen, H.; Zhou, S.; Chen, M.; Wu, L. J. Mater. Chem. 2012, 22, 25207.   DOI
18 Sarker, A. K.; Hong, J. D. Langmuir, 2012, 28, 12637.   DOI
19 Sumboja, A.; Foo, C. Y.; Wang, X.; Lee, P. S. Adv. Mater. 2013, 25, 2809.   DOI
20 Chiang, J. C.; Macdiarmid, A. G.; Synth. Met, 1998, 13, 193.
21 Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S.; Adv. Mater. 2010, 22, 3906.   DOI
22 Zheng, C.; Zhou, X.; Cao, H.; Wang, G.; Liu, Z. J. Power sources, 2014, 258, 290.   DOI
23 Acik, M.; Chabal, Y. J. J. Mater. Sci. Res. 2013, 2, 101.
24 Xie, Y.; Liu, Y.; Zhao, Y.; Tsang, Y. H.; Lau, S. P.; Huang, H.; Chai, Y. J. Mater. Chem. A, 2014, 2, 9142.   DOI
25 Bai, M. H.; Bian, L. J.; Song, Y.; Liu, X. X. ACS Appl. Mater. Interfaces, 2014, 6, 12656.   DOI
26 Zhou, H.; Ni, T.; Qing, X.; Yue, X.; Li, G.; Lu, Y. RSC Adv. 2014, 4, 4134.   DOI
27 Wang, L.; Ye, Y.; Lu, X.; Wen, Z.; Li, Z.; Hou, H.; Song, Y. Sci. Rep, 2013, 3, 3568.   DOI
28 Ma, G.; Wen, Z.; Jin, J.; Lu, Y.; Wu, X.; Wu, M.; Chen, C. J. Mater. Chem. A, 2014, 2, 10350.   DOI
29 Shen, J.; Li, T.; Huang, W.; Long, Y.; Li, N.; Ye, M. Electrochimica Acta, 2013, 95, 155.   DOI
30 Hong, J. D.; Lowack, K.; Schmitt, J.; Decher, G. Progr Colloid Polym Sci. 1993, 93, 98.   DOI
31 Ariga, K.; Lvov Y.; Kunitake, T. J. Am. Chem. Soc. 1997, 119, 2224.   DOI
32 Rogach, A. L.; Koktysh, D. S.; Harrison, M.; Kotov, N. A. Chem. Mater, 2000, 12, 15260.
33 Wang, Z. S.; Sasaki, T.; Muramatsu, M.; Ebina, Y.; Tanaka, T.; Wang, L. Z.; Watanabe, M. Chem. Mater. 2003, 18, 807.
34 Trung, N. B.; Tam, T. V.; Kim, H. R.; Hur, S. H.; Kim, E. J.; Choi, W. M. Chem. Eng. J. 2014, 255, 89.   DOI
35 Hou, Y.; Chen, L.; Liu, P.; Kang, J.; Fujita, T.; Chen, M. J. Mater. Chem. A, 2014, 2, 10910.   DOI
36 Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. ACS Appl. Mater. Interfaces, 2012, 4, 2801.
37 Reddy, T. B. In Handbook of batteries; McGraw-Hill: New York, U.S.A., 1995; p 1.3.
38 Kai, K.; Kobayashi, Y.; Yamada, Y.; Miyazaki, K.; Abe, T.; Uchimoto, Y.; Kageyama, H.; J. Mater. Chem. 2012, 22, 14691.   DOI
39 Singh, A. K.; Sarkar, D.; Khan G. G.; Mandal, K. ACS appl. Mater. Interfaces, 2014, 6, 4684.   DOI
40 Han, G.; Liu, Y.; Zhang, L.; Kan, E.; Zhang, S.; Tang, J.; Tang, W. Sci. Rep. 2014, 4, 4824.
41 Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G.; J. Mater. Chem. A, 2014, 2, 6086.   DOI
42 Lee, T.; Yun, T.; Park, B.; Sharma, B.; Song, H. K.; Kim, B. S. J. Mater. Chem. 2012, 22, 21092.   DOI   ScienceOn
43 Zhang, Y. Q.; Fan, Y. J.; Cheng, L.; Fan, L. L.; Wang, Z. Y.; Zhong, J. P.; Wu, L. N.; Shen X. C.; Shi, Z. J. Electrochimica Acta, 2013, 104, 178.   DOI
44 Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771.   DOI   ScienceOn
45 Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Adv. Funct. Mater. 2011, 21, 2366.   DOI   ScienceOn
46 Tang, P.; Han, L.; Zhang, L. ACS appl. Mater. Interfaces, 2014, 6, 10506.   DOI