• 제목/요약/키워드: capacitive application

검색결과 103건 처리시간 0.032초

Iodine-doped PPA 박막의 감습특성 (Humidity Sensing Properties of Iodine-doped PPA Thin Films)

  • 민남기;강현식;김태윤;김석기;홍석인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1561-1563
    • /
    • 1998
  • A capacitive humidity sensor is used as a test device to characterize the performance of iodine doped polyphenylacetylene(PPA) thin films in relative humidity sensing application In comparison with undoped PPA thin films. the iodine doped PPA films showed higher sensitivity(0.19pF/%RH), better linearity(4.2%FS), much lower hysteresis and lower temperature coefficients(0.043 $\sim$ 0.067pF/$^{\circ}C$) over a wide range of relative humidity.

  • PDF

공진 주파수 측정방법을 이용한 Coplanar Waveguide 용량성 불연속 구조 설계 (Modeling of Capacitive Coplanar Waveguide Discontinuities Characterized with a Resonance Method)

  • 김동영;지용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(2)
    • /
    • pp.181-184
    • /
    • 2001
  • A coplanar waveguide(CPW) on a dielectric substrate consists of a center strip conductor with semi-infinite ground planes on either side. This type of waveguide offers several advantages over microstrip line. It facilitates easy shunt as well as series mounting of active and passive devices. It eliminates the need for wraparound and via holes, and it has a low radiation loss. These, as well as several other advantages, make CPW ideally suited for microwave integrated circuit applications. However, very little information is available in the literature on models for CPW discontinuities. This lack of sufficient discontinuity models for CPW has limited the application of CPW in microwave circuit design. We presented for the characteristics of coplanar waveguide open end capacitance and series gap capacitance. Measurements by utilizing the resonance method were made and the experimental data confirmed the validity of theories. The relationships between the CPW capacitances and the physical dimensions were studied.

  • PDF

급전구조를 변형한 5-Band용 INSET-FED 마이크로스트립 패치 안테나 (An Inset-Fed Microstrip Patch Antenna Having Modified Feeding Structure in the S-Band)

  • 정동근;이석문;하천수
    • 한국정보통신학회논문지
    • /
    • 제6권6호
    • /
    • pp.897-903
    • /
    • 2002
  • 본 논문에서는 Inset-fed 안테나의 급전구조를 변형하여 기존의 Inset-fed 안테나 보다 그 성능을 향상시킨 안테나를 설계 및 제작하였다. Patch 안테나에서 gap 결합에 의한 급전 방식을 기초로 하여 변형된 급전 방식을 Inset-fed 안테나에 적용하였다. 설계된 안테나는 FDTD에 의한 simulation을 수행하여 최적치를 얻었으며 제작된 안테나는 공진 주파수에서 511은 -l4dB이고 cross polarization level은 -20dB의 특성을 보였다.

AC 및 DC 송전 선로 병렬 연계에 따른 정상상태 커플링 영향 분석 (The Study of Steady-State Interaction Between AC and DC Lines on the Same Transmission Tower)

  • 윤종수
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1221-1225
    • /
    • 2010
  • The application of the AC and DC lines on the same transmission tower is an economical and practical approaching that increase the power transmission capacity of an existing transmission corridor. But, In this case, Inductive and capacitive coupling between AC and DC lines on the same tower should be investigated in advance. According to the installation plan of 80kV ${\pm}$60MW bipole HVDC in Cheju, KOREA that will be commissioned until 2011, DC lines will parallely operate with 154kV 2 AC lines in existed 154kV AC 4 lines transmission tower. This paper presents the steady state analysis results about the interaction between 154kV AC and 80kV DC lines in the same transmission tower.

A 50-mA 1-nF Low-Voltage Low-Dropout Voltage Regulator for SoC Applications

  • Giustolisi, Gianluca;Palumbo, Gaetano;Spitale, Ester
    • ETRI Journal
    • /
    • 제32권4호
    • /
    • pp.520-529
    • /
    • 2010
  • In this paper, we present a low-voltage low-dropout voltage regulator (LDO) for a system-on-chip (SoC) application which, exploiting the multiplication of the Miller effect through the use of a current amplifier, is frequency compensated up to 1-nF capacitive load. The topology and the strategy adopted to design the LDO and the related compensation frequency network are described in detail. The LDO works with a supply voltage as low as 1.2 V and provides a maximum load current of 50 mA with a drop-out voltage of 200 mV: the total integrated compensation capacitance is about 40 pF. Measurement results as well as comparison with other SoC LDOs demonstrate the advantage of the proposed topology.

다중 양자우물 주사형 다이오드와 펄스-모드 신경회로망 구현을 위한 그 응용 (A Novel Multi-Quantum Well Injection Mode Diode And Its Application for the Implementation of Pulse-Mode Neural Circuits)

  • Song Chung Kun
    • 전자공학회논문지A
    • /
    • 제31A권8호
    • /
    • pp.62-71
    • /
    • 1994
  • A novel semiconductor device is proposed to be used as a processing element for the implementation of pulse-mode neural networks which consists of alternating n' GaAs quantum wells and undoped AlGaAs barriers sandwitched between n' GaAs cathode and P' GaAs anode and in simple circuit in conjunction with a parallel capacitive and resistive load the trigger circuit generates neuron-like pulse train output mimicking the function of axon hillock of biological neuron. It showed the sigmoidal relationship between the frequency of the pulse-train and the applied input DC voltage. In conjunction with MQWIMD the various neural circuits are proposed especially a neural chip monolithically integrated with photodetectors in order to perfrom the pattern recognition.

  • PDF

간접접촉 심전도 측정용 전극의 주파수 특성 (Frequency Response of the electrode for Indirect-contact ECG)

  • 임용규
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권3호
    • /
    • pp.249-253
    • /
    • 2008
  • The indirect-contact ECG (IDC-ECG) was introduced by a prior study for daily non-intrusive measurements. To improve the signal quality and to extend the application area of IDC-ECG, close study of the frequency characteristics of the IDC-ECG is necessary. In this study, the frequency response of the active electrode for several sample clothes was measured under conditions of actual IDC-ECG measurement with human body. Higher gain in low frequency range than expected by prior study was observed. In addition to it, wide variation in gain according to the cloth type in the low frequency range was observed. Variation in gain caused by moisture variation in the clothes was also observed. This study shows that the parallel R-C connection is proper for electrode model and the resistive factor is influenced by moisture in the clothes. This study is the first that provides the frequency response of the electrode in the actual indirect-contact ECG measurement and it is expected that the results will be helpful to improve the indirect-contact ECG method.

$RuO_2$ 후막저항을 이용한 압력센서의 출력특성 개선 (Sensing Mechanism Property of $RuO_2$ Thick Film Resistor.)

  • 이성재;박하용;민남기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.350-351
    • /
    • 2006
  • Thick film mechanical sensors can be categorized into four main areas piezoresistive, piezoelectric, capacitive and mechanic tube. In this areas, the thick film strain gage is the earliest example of a primary sensing element based on the substrates. The latest thick film sensor is used various pastes that have been specifically developed for pressure sensor application. Some elastic materials exhibit a change in bulk resistivity when they are subjected to displacement by an applied pressure. This property is referred to as piezoresistivity and is a major factor influencing the sensitivity of a piezoresistive strain gage. The effect of thick film resistors was first noticed in the early 1970, as described by Holmes in his paper in 1973.

  • PDF

In-situ Monitoring of Anodic Oxidation of p-type Si(100) by Electrochemical Impedance Techniques in Nonaqueous and Aqueous Solutions

  • 김민수;김경구;김상열;김영태;원영희;최연익;모선일
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권9호
    • /
    • pp.1049-1055
    • /
    • 1999
  • Electrochemical oxidation of silicon (p-type Si(100)) at room temperature in ethylene glycol and in aqueous solutions has been performed by applying constant low current densities for the preparation of thin SiO2 layers. In-situ ac impedance spectroscopic methods have been employed to characterize the interfaces of electrolyte/oxide/semiconductor and to estimate the thickness of the oxide layer. The thicknesses of SiO2 layers calculated from the capacitive impedance were in the range of 25-100Å depending on the experimental conditions. The anodic polarization resistance parallel with the oxide layer capacitance increased continuously to a very large value in ethylene glycol solution. However, it decreased above 4 V in aqueous solutions, where oxygen evolved through the oxidation of water. Interstitially dissolved oxygen molecules in SiO2 layer at above the oxygen evolution potential were expected to facilitate the formation of SiO2 at the interfaces. Thin SiO2 films grew efficiently at a controlled rate during the application of low anodization currents in aqueous solutions.

Self-Supporting 3D-Graphene/MnO2 Composite Supercapacitors with High Stability

  • Zhaoyang Han;Sang-Hee Son
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.175-185
    • /
    • 2023
  • A hybrid supercapacitor is a promising energy storage device in view of its excellent capacitive performance. Commercial three-dimensional foam nickel (Ni) can be used as an ideal framework due to an interconnected network structure. However, its application as an electrode material for supercapacitors is limited due to its low specific capacity. Herein, we report a successful growth of MnO2 on the surface of graphene by a one-step hydrothermal method; thus, forming a three-dimensional MnO2-graphene-Ni hybrid foam. Our results show that the mixed structure of MnO2 with nanoflowers and nanorods grown on the graphene/Ni foam as a hybrid electrode delivers the maximum specific capacitance of 193 F·g-1 at a current density 0.1 A·g-1. More importantly, the hybrid electrode retains 104% of its initial capacitance after 1,000 charge-discharge cycles at 1 A·g-1; thus, showing the potential application as a stable supercapacitor electrode.