• Title/Summary/Keyword: cantilever method

Search Result 741, Processing Time 0.036 seconds

The Influence of Tip-mass on Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid (유체유동을 갖는 회전 외팔 파이프의 동특성에 미치는 끝단질량의 영향)

  • Yoon, Han-Ik;Choi, Chang-Soo;Son, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1824-1830
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe conveying fluid and the tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the rotating angular velocity and the velocity of fluid flow in a cantilever pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by the numerical method. The effects of a tip mass on the dynamic response of a cantilever pipe are also studied. The tip-amplitude and maximum tip-deflection of each direction are directly proportional to the tip mass of the cantilever pipe in steady state. It identifies that the influence of the fluid velocity and the rotating angular velocity of the cantilever pipe give much variation the bending tip-displacement of steady state and the bending tip-displacement of non-steady state, respectively. The influence of the rotating angular velocity gives much the deflection of axial direction.

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성 해석)

  • Yoon, Han-Ik;Son, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.620-628
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip-displacement and the axial tip-deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration. When the crack depth is constant, the natural frequencies of a rotating cantilever beam are proportional to the rotating angular velocity in the each direction.

Optimal Command Input for Suppressing the Residual Vibrations of a Flexible Cantilever Beam Subjected to a Transient Translation or Rotation Motion and Its Comparison with the Input Shaping Method (병진 또는 회전하여 위치 이동하는 유연 외팔보의 잔류진동 저감을 위한 최적 명령 입력 및 입력 다듬기 방법과의 비교)

  • Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.589-594
    • /
    • 2007
  • In this paper, the optimal command input is considered in order to minimize the residual vibrations of a flexible cantilever beam when the beam simply changes its position by translation or rotation. Although a cantilever beam has many modes of vibration, it is shown that the consideration of the first mode is sufficient in this case. Thus, the problem becomes a singledegree-of-freedom system subjected to a ground excitation. Two simple methods are proposed to find the optimal command input based on the Shock Response Spectrum (SRS). The first method is the simplest and can be applied to lightly damped cases, and the second method is applicable to more general problems. The second method gives almost the same results as the input shaping method. However the proposed method gives a easier and clearer control strategy.

  • PDF

Development of the Analyzing Method for Earth Retaining Cantilever Walls using Stabilizing Piles (억지말뚝을 이용한 자립식 흙막이 공법의 해석기법 개발)

  • Kim, Chang-Young;Im, Jong-Chul;Park, Lee-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.998-1007
    • /
    • 2006
  • In former times, It is obvious that the earth retaining cantilever wall using stabilizing piles is definitely superior to the other methods due to economical efficiency and the efficiency of construction through model tests using a soil tank and practical application(Kim, 2006). However, this method was not proved in theoretical basis from the viewpoint of geotechnical engineering. Accordingly, a variety of model experiments in order to analyze the behavior of the earth retaining cantilever wall and stabilizing piles according to excavation step and earth pressure and stress acting on stabilizing piles according to excavation step were performed. On the basis of analyzing the result of model tests using a soil tank, this study suggests failure mechanism of clods and a method calculating virtual supported point. In addition, this study contributes to developing the analyzing method of retaining piles, stabilizing piles and beams connecting two piles and, this study helps this method to be established as a new design method through analyzing the results of model tests using a soil tank.

  • PDF

Development of Particle Simulation Method for Analysis of Fluid-Structure Interaction Problems (유체-구조 상호연성 해석을 위한 입자법 시뮬레이션 기술 개발)

  • Hwang, Sung-Chul;Park, Jong-Chun;Song, Chang-Yong;Kim, Young-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • Recently, some fluid-structure interaction (FSI) problems involving the fluid impact loads interacting with structures, such as sloshing, slamming, green-water, etc., have been considered, especially in the ocean engineering field. The governing equations for both an elastic solid model and flow model were originally derived from similar continuum mechanics principles. In this study, an elastic model based on a particle method, the MPS method, was developed for simulating the FSI problems. The developed model was first applied to a simple cantilever deflection problem for verification. Then, the model was coupled with the fluid flow model, the PNU (Pusan National University modified)-MPS method, and applied to the numerical investigation of the coupling effects between a cantilever and a mass of water, which has variable density, free-falling to the end of the cantilever.

Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method

  • Sun, Weipeng;Sun, Youhong;Yu, Yongping;Zheng, Shaopeng
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • In this paper, an alternative analytical method is presented to evaluate the nonlinear vibration behavior of single and double tapered cantilever beams. The admissible lateral displacement function satisfying the geometric boundary conditions of a single or double tapered cantilever beam is derived by using Rayleigh-Ritz method. Based on the Lagrange method and the Newton Harmonic Balance (NHB) method, analytical approximate solutions in closed and explicit form are obtained. These approximate solutions show excellent agreement with those of numeric method for small as well as large amplitude. Moreover, due to brevity of expressions, the present analytical approximate solutions are convenient to investigate effects of various parameters on the large amplitude vibration response of tapered beams.

A Comparative study of Finite Element Method and Boundary Element Method Analysis result of Cantilever Beam model by applying Orthotropic Material Properties (직교 이방성 재료 물성이 적용된 cantilever beam 형상의 FEM과 BEM에 의한 해석 결과에 대한 비교 연구)

  • Kim, Dong-Eun;Hwang, Young-Jin;Lee, Seok-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.730-735
    • /
    • 2007
  • This study is a comparison of the results of the orthropic material analysis at cantilever beam model using boundary element(BEM) method and finite element method(FEM). The program with the orthotropic material analysis was developed and applied to the examples in order to evaluate the accuracy of the programs. The examples shows that the results of the BEM is a good agreement with the ABAQUS results.

  • PDF

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • 김나은;현상학;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.210-216
    • /
    • 2003
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • Kim, Na-Eun;Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.262-267
    • /
    • 2002
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of a axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

  • PDF

Unbalanced wind buffeting effects on bridges during double cantilever erection stages

  • Mendes, Pedro A.;Branco, Fernando A.
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.45-62
    • /
    • 2001
  • This paper is focused on the torsional effects that are induced on bridge piers by unbalanced wind buffeting on the deck during double cantilever erection stages. The case of decks with variable cross section is considered in particular as this characteristic is typical of most frame bridges that are built by the cantilever method. The procedure outlined in the paper is basically an application of the method that Dyrbye and Hansen (1996) have illustrated for decks with constant cross section. This format was chosen because it is suitable for design purposes and may easily be implemented in structural codes. As a complement, the correspondence with the format that is adopted in the Canadian code (NBCC 1990) for the gust factor is established, which might be useful to bridge designers used to the North-American approach to the gust effects on structures. Only alongwind turbulence and horizontal movements of the deck are considered. The combination of torsional and bending effects is also discussed and it is illustrated with an example of application.