• Title/Summary/Keyword: cantilever method

Search Result 741, Processing Time 0.03 seconds

Development of Measurement System for Quantitative Measurement of Cantilever in Atomic Force Microscopy (원자간격 현미경의 캔틸레버의 정량적 특성평가를 위한 계측 시스템 개발)

  • Kweon, Hyun-Kyu;Nam, Ki-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.22-27
    • /
    • 2007
  • In this study, the two methods of stiffness measurement(Spring constant) of cantilever were proposed for quantitative measurement in Atomic Force Microscopy(AFM). As the 1st method for the measurement of stiffness, the probe method, which is used in the measurement of the semiconductor mechanical and electrical properties, was applied to the measurement of the cantilever. Experiments by the probe method were performed finding the resistance value of cantilever. As the results, the resistance was measured differently along with the dimension and the thickness of cantilever that determined the stiffness(spring constant) of the lever. As the 2nd method, the vibration characteristics(Dunkerley expression) is used to obtain the stiffness of the complex structure which is combined by AFM cantilever and the standard cantilever. We measured the resonant frequency from the complex structure using the micro stages and stereo microscope. As the results, we confirmed that the vibration characteristics(Dunkerley expression) is effected the micro complex structure of AFM cantilever.

  • PDF

Study on the Analysis of Anisotropic Laminated Cantilever Thin Plates and Anisotropic Laminated Cantilever Thick Plates (비등방성 적층 캔틸레버 박판 및 후판의 해석연구)

  • Park, Won-Tae
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.1-5
    • /
    • 2010
  • In this study, it is presented analysis results of bending problems in the anisotropic cantilever thick plates and the anisotropic laminated cantilever thin plates bending problems. Finite element method in this analysis was used. Both Kirchoff's assumptions and Mindlin assumptions are used as the basic governing equations of bending problems in the anisotropic laminated plates. The analysis results are compared between the anisotropic laminated cantilever thick plates and the anisotropic laminated cantilever thin plates for the variations of thickness-width ratios.

  • PDF

Bridge Design of Seoul Expressway (North Area) (도시고속화도로(북부간선)의 교량설계)

  • 변윤주;김우종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.135-139
    • /
    • 1991
  • The Seoul expressway is designed with prestressed concrete box girders. As a construction method, Precast Free Cantilever Method (P.F.C.M) is used which is introduced to Korea first time. Especially, the end spans in each bridge are designed to be constructed by cantilever method using temporary cantilever tendons. And pier and pierhead are prestressed vertically and horizontally.

  • PDF

A THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF OSSEOINTEGRATED PROSTHESIS ACCORDING TO THE LOCATION AND LENGTH OF CANTILEVER (골유착성 임플랜트 보철물의 캔틸레버 위치와 길이변화에 따른 삼차원 유한요소법적 응력분석)

  • Jang, Bok-Sook;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.501-532
    • /
    • 1996
  • This study investigated the effects of cantilever length, location and load condition on stress distribution developed in the implants, prostheses and supporting tissues. The osseointegrated prostheses with two 10mm Branemark implants at 2nd premolar and 1st molar sites with cantilever extensions at 1st premolar, 2nd and 3rd molar sites were constructed. Under 100N, 200N of vertical and $45^{\circ}$ oblique loads at the cantilever pontics, stress distribution patterns and displacement were analyzed with three dimensional finite element method. The results were as follows : 1. The stress was concentrated at the joint of the cantilever pontic and implant superstructure, the neck of implant and the ridge crest near the cantilever But there was little load transfer to the lower supporting tissues of implants. 2. The implant near the cantilever was displaced inferiorly while the implant far from the cantilever was displaced superiorly. In horizontal direction the implants were displaced to the direction where the loads were applied, except the apexes of the implants. 3. In case of anterior cantilever, the stress and displacement were higher than the prosthesis connected with natural tooth. 4. The stress developed in the posterior cantilevered type was higher than in the anterior cantilevered type. The greastest stress was concentrated at the ridge crest near the posterior cantilever. 5. The longer the cantilever, the more the stress was developed and was concentrated at the joint of the cantilever pontic and implant superstructure. 6. Under oblique load, the stress was concentrated at the necks of implants and the ridge crests, but decreased at the joint of the cantilever pontic and implant superstructure than under vertical load.

  • PDF

Thermo-piezoelectric $Si_3N_4$ cantilever array on n CMOS circuit for probe-based data storage using wafer-level transfer method (웨이퍼 본딩을 이용한 탐침형 정보 저장장치용 열-압전 켄틸레버 어레이)

  • Kim Young-Sik;Nam Hyo-Jin;Lee Caroline Sunyoung;Jin Won-Hyeog;Jang Seong.Soo;Cho Il-Joo;Bu Jong Uk
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.22-25
    • /
    • 2005
  • In this research, a wafar-level transfer method of cantilever array on a conventional CMOS circuit has been developed for high density probe-based data storage. The transferred cantilevers were silicon nitride ($Si_3N_4$) cantilevers integrated with poly silicon heaters and piezoelectric sensors, called thermo-piezoelectric $Si_3N_4$ cantilevers. In this process, we did not use a SOI wafer but a conventional p-type wafer for the fabrication of the thermo-piezoelectric $Si_3N_4$ cantilever arrays. Furthermore, we have developed a very simple transfer process, requiring only one step of cantilever transfer process for the integration of the CMOS wafer and cantilevers. Using this process, we have fabricated a single thermo-piezoelectric $Si_3N_4$ cantilever, and recorded 65nm data bits on a PMMA film and confirmed a charge signal at 5nm of cantilever deflection. And we have successfully applied this method to transfer 34 by 34 thermo-piezoelectric $Si_3N_4$ cantilever arrays on a CMOS wafer. We obtained reading signals from one of the cantilevers.

  • PDF

Optimal Design of Piezoelectric Cantilever Fan by Three-Dimensional Finite Element Analysis

  • Kim Byoung-Jai;Rho Jong-Seok;Jung Hyung-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.90-94
    • /
    • 2005
  • As the structure of the piezoelectric bimorph cantilever becomes increasingly more complicated, a more accurate and efficient analysis of piezoelectric media is needed. In this paper, the piezoelectric transducer is analyzed by using the three-dimensional finite element method. The validity of the three-dimensional finite element routine is confirmed by comparing the experimental result. The resonance characteristics, such as resonance frequency and anti-resonance frequency, of the piezoelectric cantilever are calculated by the experimentally verified three dimensional finite element method. Subsequently, the characteristics, such as mechanical displacement and impedance, are calculated at the resonance frequency. Besides, to design the piezoelectric bimorph cantilever shape that maximizes displacement at the tip, the ES (Evolution Strategy) algorithm is applied. Finally, optimal design for the fan of the piezoelectric cantilever is fulfilled to obtain maximum displacement at the tip. From these results, the application potentiality of the piezoelectric bimorph cantilever fan is identified.

Stability Analysis of Cracked cantilever beam Subjected to Follower force (유체유동 회전 외팔파이프의 안정성에 미치는 끝단질량의 영향)

  • Yoon, Han-Ik;Son, In-Soo;Kin, Dong-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.121-126
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived applying a modeling method that employs hybrid deformation variables. 'TI1e influences of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe are studied by the numerical method. The effect of tip mass on the stability of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified.

  • PDF

Analysis of Bridging Stress Effect of Polycrystalline Aluminas Using Double Cantilever Beam Method II. Development of Double Cantilever Beam Method Considering Bridging Effect (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해서 II. Bridging 효과를 고려한 Double cantilever Beam 분석방법의 정립)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.590-601
    • /
    • 1996
  • This study aims at developing the double cantilever beam (DCB) method in order to calculate the bridging stress distribution in polycrystalline aluminas with different grain sizes. In the already existing DCB methods the measured crack opening displacement (COD) in coarse-grained aluminas deviates generally from the calcula-ted one because of the grain-interface bridging in the crack wake. In the current DBC method developed in the present study the effect of the bridging stress was considered in the DCB analysis. whereas the only effect of applied point-loading at the end of DCB specimen was taken into account in the existing DCB analysis The crack closure due to bridging stress was calculated using the power-law relation and the theoretical model developed in Part I of the present paper as bridging stress function and then compared analytically. The limitations of the current DCB methods such as specimen dimensions applied loads and elastic modulus were discussed in detail to provide a reliability of the newly developed DCB analysis for the bridging stress distribu-tion in polycrystalline aluminas.

  • PDF

Vibration Analysis of a Rotating Cantilever Beam with Tip Mass Using DTM (끝단 집중 질량을 갖는 회전 외팔보의 DTM을 이용한 진동 해석)

  • Kim, Min-Ju;Kang, Nam-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1058-1063
    • /
    • 2010
  • The vibration analysis of a rotating cantilever beam with tip mass was studied by using DTM(differential transformation method). DTM is one of the numerical methods, for finding series solutions by transforming differential equations to algebraic ones similar with Laplace transform. The advantages of the DTM are that it is easy to understand and is effective in finding numerical solutions. Applying DTM, the natural frequencies of a rotating cantilever beam were obtained taking into consideration the effects of tip mass. Also, convergence study of DTM was performed to decide the number of terms used in eigenvalue problems. Numerical results obtained by DTM show good agreement with those by other methods. As a result, it is expected that DTM can be a useful method in vibration analysis such as that of a rotating cantilever beam with tip mass.

Optimum Design of Cantilever Retaining Wall (켄틸레버 옹벽의 최적 설계)

  • 김종옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.90-99
    • /
    • 1995
  • In this study, the algorithm for the optimum design of cantilever retaining wall was de veloped and solved using Modified Method of Feasible Directions(MMFD), Sequential Linear Programming(SLP) and Sequential Quadratic Programming(SQP). The algorithm was applied to the optimum design of 3-different height cantilever re tairing walls. It was shown that even though the starting points and optimization strategies are dif- ferent, the objective function and optimum design variables converge to within a close range, and consequently the reliability and efficiency of the underlying optimum design algorithm can be verified. It is expected that the optimum design algorithm developed in this study can be utilized efficiently for the optimum design of any scale cantilever retaining wall. Using optimum design method, cantilever retaining wall will be designed more economi- cally and reasonably than using traditional design method.

  • PDF