• Title/Summary/Keyword: cantilever beam

Search Result 831, Processing Time 0.025 seconds

Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines

  • Dinh, Van-Nguyen;Basu, Biswajit;Nielsen, Soren R.K.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.231-253
    • /
    • 2013
  • The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static method. The hydrodynamic effects calculated by using Morison's equation and strip theory consist of added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is considered, the coupling is significant for the responses of both the nacelle and the spar.

Automated Finite Element Mesh Generation for Integrated Structural Systems (통합 구조 시스템의 유한요소망 형성의 자동화)

  • Yoon, Chongyul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2023
  • The structural analysis module is an essential part of any integrated structural system. Diverse integrated systems today require, from the analysis module, efficient real-time responses to real-time input such as earthquake signals, extreme weather-related forces, and man-made accidents. An integrated system may also be for the entire life span of a civil structure conceived during the initial conception, developed throughout various design stages, effectively used in construction, and utilized during usage and maintenance. All these integrated systems' essential part is the structural analysis module, which must be automated and computationally efficient so that responses may be almost immediate. The finite element method is often used for structural analysis, and for automation, many effective finite element meshes must be automatically generated for a given analysis. A computationally efficient finite element mesh generation scheme based on the r-h method of mesh refinement using strain deviations from the values at the Gauss points as error estimates from the previous mesh is described. Shape factors are used to sort out overly distorted elements. A standard cantilever beam analyzed by four-node plane stress elements is used as an example to show the effectiveness of the automated algorithm for a time-domain dynamic analysis. Although recent developments in computer hardware and software have made many new applications in integrated structural systems possible, structural analysis still needs to be executed efficiently in real-time. The algorithm applies to diverse integrated systems, including nonlinear analyses and general dynamic problems in earthquake engineering.

Measurements of the Adhesion Energy of CVD-grown Monolayer Graphene on Dielectric Substrates (단일층 CVD 그래핀과 유전체 사이의 접착에너지 측정)

  • Bong Hyun Seo;Yonas Tsegaye Megra;Ji Won Suk
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.377-382
    • /
    • 2023
  • To enhance the performance of graphene-based devices, it is of great importance to better understand the interfacial interaction of graphene with its underlying substrates. In this study, the adhesion energy of monolayer graphene placed on dielectric substrates was characterized using mode I fracture tests. Large-area monolayer graphene was synthesized on copper foil using chemical vapor deposition (CVD) with methane and hydrogen. The synthesized graphene was placed on target dielectric substrates using polymer-assisted wet transfer technique. The monolayer graphene placed on a substrate was mechanically delaminated from the dielectric substrate by mode I fracture tests using double cantilever beam configuration. The obtained force-displacement curves were analyzed to estimate the adhesion energies, showing 1.13 ± 0.12 J/m2 for silicon dioxide and 2.90 ± 0.08 J/m2 for silicon nitride. This work provides the quantitative measurement of the interfacial interactions of CVD-grown graphene with dielectric substrates.

Numerical Simulation for the Quasi-static Behavior of Superelastic Nitinol Shape Memory Alloys (SMAs) (초탄성 니티놀 형상기억합금의 준정적 거동에 대한 수치해석적 재현)

  • Hu, Jong Wan
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.493-501
    • /
    • 2015
  • Superelastic shape memory alloys (SMAs) are metallic materials that can automatically recover to their original condition without heat treatment only after the removal of the applied load. These smart materials have been wildly applied instead of steel materials to the place where large deformation is likely to concentrate. In spite of many advantages, superelastic SMA materials have been limited to use in the construction filed because there is lack of effort and research involved with the development of the material model, which is required to reproduce the behavior of superelastic SMA materials. Therefore, constitutive material models as well as algorithm codes are mainly treated in this study for the purpose of simulating their hysteretic behavior through numerical analyses. The simulated curves are compared and calibrated to the experimental test results with an aim to verify the adequacy of material modeling. Furthermore, structural analyses incorporating the material property of the superelastic SMAs are conducted on simple and cantilever beam models. It can be shown that constitutive material models presented herein are adequate to reliably predict the behavior of superelastic SMA materials under cyclic loadings.

Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Kinds of Non-Woven Tissues : Part I-Mode I (종류가 다른 부직포가 삽입된 하이브리드 복합재료의 층간파괴인성 : Part I-Mode I)

  • Jeong, Jong-Seol;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.497-502
    • /
    • 2013
  • In this study, the interlaminar fracture toughness in mode I of a hybrid composite inserted with different types of non-woven tissues was determined. The interlaminar fracture toughness in mode I is obtained by a double cantilever beam test. The experiment is performed using three types of non-woven tissues: 8 $g/m^2$ of carbon tissue, 10 $g/m^2$ of glass tissue, and 8 $g/m^2$ of polyester tissue. Considering a specimen with no non-woven tissue as a reference, the interlaminar fracture toughness in mode I of specimens inserted with non-woven carbon and glass tissues decreases by as much as 6.3% and 11.4%, respectively. However, the fracture toughness of a hybrid composite specimen inserted with non-woven polyester tissue increases by as much as 69.4%. It is considered that the specimen inserted with non-woven polyester tissue becomes cheaper, and lighter, and the value of the fracture toughness becomes much greater than that of the non-woven carbon tissue.

The Behavior of Stabilizing Piles installed in a Large-Scale Cut Slope (대규모 절개사면에 설치된 억지말뚝의 거동)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2009
  • The effect of stabilizing piles on cut slopes is checked and the behavior of slope soil and piles are observed throughout the year by field measurements on the large-scale cut slopes. First of all, the behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil are gradually increased and rapidly decreased at depth of sliding surface. As the result of measuring deformation, the depth of sliding surface below the ground surface can be known. Based on the measuring the depth of the sliding surface, some earth retention system including stabilizing piles were designed and constructed in this slope. To check the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. As the result of instrumentation, the maximum deflection of piles is measured at the pile head. It is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. The deflection of piles is increased during cutting slope in front of piles for the construction of soil nailing. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

Behaviour of Shear Wall Structures with Energy Dissipation Device in Coupling Beam (연결보에 감쇠장치를 적용한 전단벽식 구조물의 거동특성)

  • Kim, Jin-Sang;Yoon, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Building structures of apartment in korea conventionally adopt shear walls using coupling beams as seismic force-resisting systems. Energy dissipating devices employed the building structures are used instead of the coupling beams in order to increase the seismic performances by providing additional damping and stiffness. This study aims to introduce energy dissipating devices which are preferred in structural system and aims to investigate structural behaviors of shear wall structures employing such devices instead of coupling beams. In order for achieve research objectives, Finite Element Analysis and Nonlinear analysis was carry out. Finite Element Analysis results was correspond with experimental results and this is indicated that the device can provide sufficient additional damping and stiffness into shear wall structures. Throughout nonlinear static analyses, examples structures with the devices can enhance seismic performance of building structures due to their sufficient energy dissipating capacities. Especially, strength and ductility capacities were significantly improved when it is compared with the performance of building structures without the devices. Throughout nonlinear dynamic analyses, it was observed that structural damages can be mitigated due to reduced seismic demands for seismic force-resisting systems. It is especially noted due to the fact that story drifts, accelerations, shear demands are reduced by 15~18%, 20~28% and 15~20%, respectively.

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

이온빔을 이용한 Prepreg의 표면처리가 탄소섬유/에폭시 복합재의 파괴특성에 미치는 영향

  • 이경엽;신동혁
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.17-17
    • /
    • 2000
  • 탄소섬유/에폭시 적충복합재는 경량성 및 비강도, 비강성이 우수해 최근 들어 항공기, 자동차, 우주선 등에 대한 적용이 급속도로 증가하고 있다. 그러나 적충복합재 구조물에 있어 최대 약점 중 하나는 적충된 면이 서로 떨어지는 충간분리가 발생 할 수 있다는 것이다. 본 논문에서는 탄소섬유/에폭시 적충복합재의 파괴특성을 향상시키기 위해 프리프레그 (prepreg)를 이온빔으로 표면처리하는 방법에 대해 연구하였다. 즉 프리프레그를 $Ar^+$ 이온도 움반응법에 의해 표면처리 하였으며 이를 적용, 열림모드 파괴특성을 검토하였다. 즉 표준 프리프레그와 표면처리 된 프리프레그를 이용 $0^{\circ}$ 단일방향 DCB(Double Cantilever Beam) 시편을 제작하였으며, 각각의 경우에 대하여 파괴시험을 수행하였다. 파괴시험으로부터 파괴 저항곡선(R-곡선)을 결정하여 이를 비교 검토함으로서 프리프레그의 표면처리가 파괴특성에 미치는 영향을 해석하였다. 본 연구를 통해 얻어진 결과를 요약하면 다음과 같다. 첫째, 층간분리 길이가 동일한 경우 표면처리한 경우의 컴플라이언스가 표면처리 하지 않은 경우에 비해 작게 나타남을 알 수 있었다. 둘째, 파괴하중 값은 컴플라이언스와 반대현상을 나타낸다. 즉 표면처리한 경우의 파괴하중 이 표면처리 하지 않은 경우에 비해 크게 나타남을 알 수 있었다. 셋째, 표면처리 한 시편의 경우 R-곡선이 향상됨을 알 수 있었다. 즉 표면처리 한 경우의 열림모드 파괴이성, $G_{Ic}$ 값은 표준 시편의 값보다 24% 높았다. 이는 프리프레그의 표면처리 가 충과 충간의 접착강도를 증가시키고 또한 탄소섬유와 에폭시 간의 계면력을 증가시킨데 기인하는 것으로 사려된다.되었으며, duty-on 시간의 증가에 따라 $Cr_2N$ 상의 형성이 점점 많아져 80% duty-on 시간 경우에는 거의 CrN과 $Cr_2N$ 상이 공존하는 것으로 나타났다. 또한 duty-on 시간이 증가할수록 회절피크의 세기가 증가하여 결정화가 더 많이 진행되어짐을 알 수 있었다. 마찬가지로 바이어스 펄스이 주파수에 다른 결정성의 변화도 펄스의 주파수가 증가할수록 박막이 결정성이 좋아지고 $Cr_2N$ 상이 쉽게 형성되었다. 증착 진공도에 따른 결정성은 상대적으로 질소의 농도가 높은 낮은 진공도에서는 CrN 상이 주로 형성되었으며, 반대로 높은 진공도에서는 $Cr_2N$ 상이 많이 만들어졌다. 즉 $1.3{\times}10^{-2}Torr$의 증착 진공도에서는 CrN 상만이 보이는 반면 $9.0{\tiems}1-^{-2}Torr$ 진공도에서부터 $Cr_2N$ 상이 형성되기 시작하여 $5.0{\tiems}10^{-2}Torr$ 진공도에서는 두개의 상이 혼재되어 있음을 알 수 있었다. 박막의 내마모성을 조사한 결과 CrN 박막의 마찰 계수는 초기에 급격하게 증가한 후 0.5에서 0.6 사이의 값으로 큰 변화를 보이지 않았으며, $Cr_2N$ 박막도 비슷한 거동을 보였다.차 이, 목적의 차이, 그리고 환경의 의미의 차이에 따라 경관의 미학적 평가가 달라진 것으로 나타났다.corner$적 의도에 의한 경관구성의 일면을 확인할수 있지만 엄밀히 생각하여 보면 이러한 예의 경우도 최락의 총체적인 외형은 마찬가지로 $\ulcorner$순응$\lr

  • PDF