• Title/Summary/Keyword: cantilever beam

Search Result 831, Processing Time 0.023 seconds

A Study on Mode I Interlaminar Fracture Toughness of Hybrid Composites (하이브리드 복합재료의 모드 I 층간파괴인성치에 관한 연구)

  • 김형진;곽대원;김재동;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.262-268
    • /
    • 2003
  • This paper describes the effect of loading rate, specimen geometries and material properties for Mode I interlaminar fracture toughness of hybrid composite by using double cantilever beam (DCB) specimen. In the range of loading rate 0.2-20mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate (G_IC). The value of $G_IC$ for variation of initial crack length are nearly similar values when material properties are CF/CF and GF/GF, however, the value of $G_IC/$ are highest with the increasing initial crack length at CF/GF. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF

DHC Characteristics of M11 Pressure Tube in Wolsong Unit 1

  • Kim, Sung-Soo;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Delayed hydride cracking (DHC) velocity and threshold stress intensity factor for DHC ($K_{IH}$) tests in the radial direction on M11 pressure tube material in Wolsong unit 1 were carried out following the Atomic Energy Canada Limited (AECL) standard test procedure in order to identify the effect of undercooling on DHCV and to acquire the $K_{IH}$ data. The results showed that $K_{IH}$ 's were 8.8$\pm$0.8 MPa√m in the back offcut and 11.4$\pm$0.7 MPa√m in the front offcut. The fact that $K_{IH}$ in the front offcut is about 20% higher than that in the back offcut is attributed to the microstructural difference between the materials of the front and back ends. $K_{IH}$ 's in M11 pressure tube appeared to be higher than the values from the tubes made of double melted ingot reported earlier. This can be interpreted by the fact that very small amounts of Chlorine (Cl) and Phosphorus (P) are contained in the ingot and that the content of the harmful elements in the M11 pressure tube is equivalent to that made of a quadruple melting process. DHC velocities at 25$0^{\circ}C$ in the front offcut in the radial direction are measured to be 5~8$\times$10$^{-8}$ m/s. The results show that the prior thermal history change the DHC velocity significantly. This effect was confirmed by the experiment of undercooling prior to the DHC tests.DHC tests.

  • PDF

Fabrication of Nano Dot and Line Arrays Using NSOM Lithography

  • Kwon Sangjin;Kim Pilgyu;Jeong Sungho;Chang Wonseok;Chun Chaemin;Kim Dong-Yu
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • Using a cantilever type nanoprobe having a 100㎚m aperture at the apex of the pyramidal tip of a near-field scanning optical microscope (NSOM), nanopatterning of polymer films are conducted. Two different types of polymer, namely a positive photoresist (DPR-i5500) and an azopolymer (Poly disperse orange-3), spincoated on a silicon wafer are used as the substrate. A He-Cd laser with a wavelength of 442㎚ is employed as the illumination source. The optical near-field produced at the tip of the nanoprobe induces a photochemical reaction on the irradiated region, leading to the fabrication of nanostructures below the diffraction limit of the laser light. By controlling the process parameters properly, nanopatterns as small as 100㎚ are produced on both the photoresist and azopolymer samples. The shape and size variations of the nanopatterns are examined with respect to the key process parameters such as laser beam power, irradiation time or scanning speed of the probe, operation modes of the NSOM (DC and AC modes), etc. The characteristic features during the fabrication of ordered structures such as dot or line arrays using NSOM lithography are investigated. Not only the direct writing of nano array structures on the polymer films but also the fabrication of NSOM-written patterns on the silicon substrate were investigated by introducing a passivation layer over the silicon surface. Possible application of thereby developed NSOM lithography technology to the fabrication of data storage is discussed.

Single Level Adaptive hp-Refinement using Integrals of Legendre Shape Function (적분형 르장드르 형상함수를 이용한 단일 수준 적응적 hp-체눈 세분화)

  • Jo, Jun-Hyung;Yoo, Hyo-Jin;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.331-340
    • /
    • 2010
  • The basic theory and application of new adaptive finite element algorithm have been proposed in this study including the adaptive hp-refinement strategy, and the effective method for constructing hp-approximation. The hp-adaptive finite element concept needs the integrals of Legendre shape function, nonuniform p-distribution, and suitable constraint of continuity in conjunction with irregular node connection. The continuity of hp-adaptive mesh is an important problem at the common boundary of element interface. To solve this problem, the constraint of continuity has been enforced at the common boundary using the connectivity mapping matrix. The effective method for constructing of the proposed algorithm has been developed by using hierarchical nature of the integrals of Legendre shape function. To verify the proposed algorithm, the problem of simple cantilever beam has been solved by the conventional h-refinement and p-refinement as well as the proposed hp-refinement. The result obtained by hp-refinement approach shows more rapid convergence rate than those by h-refinement and p-refinement schemes. It it noted that the proposed algorithm may be implemented efficiently in practice.

Structural Health Monitoring System Employing Smart Sensor Technology Part 1: Development and Performance Test of Smart Sensor (스마트 센서 기술을 이용한 구조물 건전도 모니터링 시스템 Part I : 스마트 센서의 개발과 성능평가)

  • Heo, Gwang Hee;Lee, Woo Sang;Kim, Man Goo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.134-144
    • /
    • 2007
  • In this study, a smart sensor unit is developed by using the smart sensor technology that is being rapidly developed in recent years for structural health monitoring system, and its performance is evaluated through various experiments, and also, damage detection experiment is performed on a model structure. This paper as the first half of this study contains the development and performance evaluation of the smart sensor. In the latter half of this study, structure damage detection experiment is performed for the application of verified smart sensor unit into structural health monitoring, and it is compared with a wire measurement system. The smart sensor is developed by using high-power wireless modem, MEMS Sensor and AVR microcontroller, and an embedded program is also developed for the control and operation of the sensor unit. To verify the performance of the smart sensor, many experiments are performed for sensitivity and resolution analysis tests, data acquisition by using cantilever beam and shaker, and on-site application using actual bridge. As a result, the smart sensor proves to be satisfactory in its performance.

Identify Modal Parameter by The Output Response of Structure Using Smart Sensor System (스마트 센서 시스템을 이용한 구조물의 모달 인자 추출)

  • Lee, Woo-Sang;Heo, Gwang-Hee;Park, Ki-Tae;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.149-160
    • /
    • 2008
  • In this study, the research was carried out on how to identify the modal parameter by acquiring the output response of the structure only through the smart sensor system. The objective of this research is to verify the performance and the on-site adaptability of the smart sensor system that have been actively researched as the advanced measuring system so far. Smart Sensor System was developed so that the real-time dynamic measurement can be performed by means of MEMS-type accelerated sensor, 8 bit CPU, wireless MODEM. In the modal parameter identification test, random excitation was added to the cantilever beam, and then the response of the structure was obtained using the smart sensor system and the wire measurement system respectively. In analyzing the data, modal parameter was identified using NExT & ERA algorithm. Furthermore, the optimal measurement location was selected through EOT algorithm in order to obtain the qualified output response. Result of the test, it was possible to verify the on-site applicability of the smart sensor.

Mechanical behavior of FRP confined steel tubular columns under impact

  • Liu, Qiangqiang;Zhou, Ding;Wang, Jun;Liu, Weiqing
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.691-702
    • /
    • 2018
  • This paper presents experimental and analytical results of fiber reinforced polymer (FRP) confined steel tubular columns under transverse impact loads. Influences of applied impact energy, thickness of FRP jacket and impact position were discussed in detail, and then the impact responses of FRP confined steel tubes were compared with bare steel tubes. The test results revealed that the FRP jacket contributes to prevent outward buckling deformation of steel at the clamped end and inward buckling of steel at the impact position. For the given applied impact energy, specimens wrapped with one layer and three layers of FRP have the lower peak impact loads than those of the bare steel tubes, whereas specimens wrapped with five layers of FRP exhibit the higher peak impact loads. All the FRP confined steel tubular specimens displayed a longer duration time than the bare steel tubes under the same magnitude of impact energy, and the specimen wrapped with one layer of FRP had the longest duration time. In addition, increasing the applied impact energy leads to the increase of peak impact load and duration time, whereas increasing the distance of impact position from the clamped end results in the decrease of peak impact load and the increase of duration time. The dynamic analysis software Abaqus Explicit was used to simulate the mechanical behavior of FRP confined steel tubular columns, and the numerical results agreed well with the test data. Analytical solution for lateral displacement of an equivalent cantilever beam model subjected to impact load was derived out. Comparison of analytical and experimental results shows that the maximum displacement can be precisely predicted by the present theoretical model.

Evaluation of Statistical Fatigue Life of Hybrid Composite Joints in Low-Floor Bus (저상버스용 하이브리드 복합재 조인트부의 통계적 피로수명평가)

  • Jung, Dal-Woo;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1705-1713
    • /
    • 2010
  • The reliable fatigue life for hybrid composite joint structures was estimated by a statistical method for evaluating fatigue life; the results of the fatigue test varied widely. Cyclic bending tests were performed on a cantilever beam with a hybrid composite joint, which was developed for the body of a low-floor bus. In order to estimate the fatigue life of the hybrid composite joint structure by comparing the data obtained during the fatigue tests, the most suitable probabilistic density function among the normal, lognormal, and Weibull distributions was selected. The probabilistic-stress-life (P-S-N) curves calculated by using the selected Weibull distribution was suggested for process of statistical fatigue life estimation and reliability design.

Study for Curling Control of Plain Concrete in Underground Parking Lot (지하주차장 무근콘크리트 컬링제어를 위한 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.243-249
    • /
    • 2018
  • The study for curling control of plain concrete in underground parking lot was conducted in this study. The shrinkage reducing agent(SRA) was used to minimize the curling deformation of plain concrete in underground parking lot. For the quantitative curling control, the simplified prediction method applying the deflection theory of cantilever beam was proposed too, and the validity of prediction method was examined through the comparison between the experimental values and predictive values. In result, the curling of SRA 1.0% concrete was about 30% less than that of SRA 0.0% concrete, and the possibility of curling estimation by the simplified prediction method was confirmed through the comparison between the experimental values and predictive values.

The Effects of the Initial Crack Length and Fiber Orientation on the Interlaminar Delamination of the CFRP/GFRP Hybrid Laminate (초기 균열길이 및 섬유방향이 CFRP/GFRP 하이브리드 적층재의 층간 파괴에 미치는 영향)

  • Kwon, Oh-Heon;Kwon, Woo-Deok;Kang, Ji-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • Considering the wind power system and the rotor blades which are composed of much technology, the wind power blade would be the most dangerous part because it revolves at high speed and weighs about dozens of tons, if the accident happens. Therefore, the light weight composite materials have been replacing as substitutional materials. The object of this study is to examine the delamination and damage for CFRP/GFRP hybrid composite that is used for strength improvement of a wind power blade. The influence of the initial crack length and fiber orientation for the interlaminar delamination was exposed for the blade safety. Plain woven CFRP instead of GFRP was inserted into the layer of the box spar for improving the strength and blade life. DCB(Double Cantilever Beam) specimen was used for evaluating fracture toughness and damage evaluation of interlaminar delamination. The material used in the experiment is a commercial material known as CF 3327 EPC in plain woven carbon prepreg(Hankuk Carbon Co.) and UD glass fiber prepreg(Hyundai Fiber Co.). From the results, crack growth rate is not so different according to the variation of the initial crack length. Mode I interlamainar fracture toughness of fiber direction $0^{\circ}$ is higher than that of $45^{\circ}$. Interlaminar fracture has an effect on fiber direction and K decreased with lower value according to increasing initial crack length. Also energy release rate fracture toughness was evaluated because CFRP/GFRP hybrid composite with a different thickness is under the mixed mode loading condition. The interlaminar fracture was almost governed by mode I fracture even though the mixed mode.