• 제목/요약/키워드: candidate genes

검색결과 604건 처리시간 0.03초

Association of the Single Nucleotide Polymorphisms in RUNX1, DYRK1A, and KCNJ15 with Blood Related Traits in Pigs

  • Lee, Jae-Bong;Yoo, Chae-Kyoung;Park, Hee-Bok;Cho, In-Cheol;Lim, Hyun-Tae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권12호
    • /
    • pp.1675-1681
    • /
    • 2016
  • The aim of this study was to detect positional candidate genes located within the support interval (SI) regions based on the results of red blood cell, mean corpuscular volume (MCV), and mean corpuscular hemoglobin quantitative trait locus (QTL) in Sus scrofa chromosome 13, and to verify the correlation between specific single-nucleotide polymorphisms (SNPs) located in the exonic region of the positional candidate gene and the three genetic traits. The flanking markers of the three QTL SI regions are SW38 and S0215. Within the QTL SI regions, 44 genes were located, and runt-related transcription factor 1, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and potassium inwardly-rectifying channel, subfamily J, member 15 KCNJ15-which are reported to be related to the hematological traits and clinical features of Down syndrome-were selected as positional candidate genes. The ten SNPs located in the exonic region of the three genes were detected by next generation sequencing. A total of 1,232 pigs of an $F_2$ resource population between Landrace and Korean native pigs were genotyped. To investigate the effects of the three genes on each genotype, a mixed-effect model which is the considering family structure model was used to evaluate the associations between the SNPs and three genetic traits in the $F_2$ intercross population. Among them, the MCV level was highly significant (nominal $p=9.8{\times}10^{-9}$) in association with the DYRK1A-SNP1 (c.2989 G$F_2$ intercross, our approach has limited power to distinguish one particular positional candidate gene from a QTL region.

Screening of Essential Genes in Staphylococcus aureus N315 Using Comparative Genomics and Allelic Replacement Mutagenesis

  • Ko Kwan-Soo;Lee Ji-Young;Song Jae-Hoon;Baek Jin-Yang;Oh Won-Sup;Chun Jong-Sik;Yoon Ha-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.623-632
    • /
    • 2006
  • To find potential targets of novel antimicrobial agents, we identified essential genes of Staphylococcus aureus N315 by using comparative genomics and allele replacement mutagenesis. By comparing the genome of S. aureus N315 with those of Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus pneumoniae, a total of 481 candidate target genes with similar amino acid sequences with at least three other species by >40% sequence identity were selected. of 481 disrupted candidate genes, 122 genes were identified as essential genes for growth of S. aureus N315. Of these, 51 essential genes were those not identified in any bacterial species, and 24 genes encode proteins of unknown function. Seventeen genes were determined as non-essential although they were identified as essential genes in other strain of S. aureus and other species. We found no significant difference among essential genes between Streptococcus pneumoniae and S. aureus with regard to cellular function.

Single nucleotide polymorphisms in candidate genes associated with milk yield in Argentinean Holstein and Holstein × Jersey cows

  • Raschia, Maria Agustina;Nani, Juan Pablo;Maizon, Daniel Omar;Beribe, Maria Jose;Amadio, Ariel Fernando;Poli, Mario Andres
    • Journal of Animal Science and Technology
    • /
    • 제60권12호
    • /
    • pp.31.1-31.10
    • /
    • 2018
  • Background: Research on loci influencing milk production traits of dairy cattle is one of the main topics of investigation in livestock. Many genomic regions and polymorphisms associated with dairy production have been reported worldwide. In this context, the purpose of this study was to identify candidate loci associated with milk yield in Argentinean dairy cattle. A database of candidate genes and single nucleotide polymorphisms (SNPs) for milk production and composition was developed. Thirty-nine SNPs belonging to 22 candidate genes were genotyped on 1643 animals (Holstein and Holstein x Jersey). The genotypes obtained were subjected to association studies considering the whole population and discriminating the population by Holstein breed percentage. Phenotypic data consisted of milk production values recorded during the first lactation of 1156 Holstein and 462 Holstein ${\times}$ Jersey cows from 18 dairy farms located in the central dairy area of Argentina. From these records, 305-day cumulative milk production values were predicted. Results: Eight SNPs (rs43375517, rs29004488, rs132812135, rs137651874, rs109191047, rs135164815, rs43706485, and rs41255693), located on six Bos taurus autosomes (BTA4, BTA6, BTA19, BTA20, BTA22, and BTA26), showed suggestive associations with 305-day cumulative milk production (under Benjamini-Hochberg procedure with a false discovery rate of 0.1). Two of those SNPs (rs43375517 and rs135164815) were significantly associated with milk production (Bonferroni adjusted p-values < 0.05) when considering the Holstein population. Conclusions: The results obtained are consistent with previously reported associations in other Holstein populations. Furthermore, the SNPs found to influence bovine milk production in this study may be used as possible candidate SNPs for marker-assisted selection programs in Argentinean dairy cattle.

Comparative Analysis of Repetitive Elements of Imprinting Genes Reveals Eleven Candidate Imprinting Genes in Cattle

  • Kim, HyoYoung;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권6호
    • /
    • pp.893-899
    • /
    • 2009
  • Few studies have reported the existence of imprinted genes in cattle compared to the human and mouse. Genomic imprinting is expressed in monoallelic form and it depends on a single parent-specific form of the allele. Comparative analysis of mammals other than the human is a valuable tool for explaining the genomic basis of imprinted genes. In this study, we investigated 34 common imprinted genes in the human and mouse as well as 35 known non-imprinted genes in the human. We found short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), and long terminal repeats (LTRs) in imprinted (human and mouse) and control (cattle) genes. Pair-wise comparisons for the three species were conducted using SINEs, LINEs, and LTRs. We also calculated 95% confidence intervals of frequencies of repetitive sequences for the three species. As a result, most genes had a similar interval between species. We found 11 genes with conserved SINEs, LINEs, and LTRs in the human, mouse, and cattle. In conclusion, eleven genes (CALCR, Grb10, HTR2A, KCNK9, Kcnq1, MEST, OSBPL5, PPP1R9A, Sgce, SLC22A18, and UBE3A) were identified as candidate imprinted genes in cattle.

The SNP of WBP1 is associated with heifer reproductive performance in the Korean native cattle Hanwoo

  • Jeong, Jiyeon;Lee, Seung-Hwan;Choi, Inchul
    • 농업과학연구
    • /
    • 제46권1호
    • /
    • pp.27-31
    • /
    • 2019
  • It is well documented that intensive selection in dairy cattle for economic value such as increased milk yield led to a decline in reproductive performance. Recent studies using genome-wide association studies (GWASs) discovered candidate genes involved in the lower fertility including embryo development and conception rates. However, the information, which showed a lower reproductive performance, is limited to dairy cattle, especially Holstein, and the candidate genes were not examined in the Korean native cattle Hanwoo which has been intensively selected and bred for meat in the last few decades. We selected the candidate genes WBP1 and PARM1 reported to be associated with cow and/or heifer conception in dairy cattle and analyzed the genotype because those genes have non-synonymous single nucleotide polymorphisms (SNPs). To determine the single base change, we used the high resolution melting (HRM) assay which is rapid and cost-effective for a small number of genes. We found that most heifers with higher conception (1: service per conception) have the AA genotype coding Threonine rather than Proline in the WBP1 gene. We did not detect an association for a SNP in PARM1 in our analysis. In conclusion, the genetic variation of WBP1 can be used as a selective marker gene to improve reproductive performance, and HRM assay can be used to identify common SNP genotypes rapidly and cost effectively.

Novel Strain Leuconostoc lactis DMLL10 from Traditional Korean Fermented Kimchi as a Starter Candidate for Fermented Foods

  • Yura Moon;Sojeong Heo;Hee-Jung Park;Hae Woong Park;Do-Won Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1625-1634
    • /
    • 2023
  • Leuconostoc lactis strain DMLL10 was isolated from kimchi, a fermented vegetable, as a starter candidate through safety and technological assessments. Strain DMLL10 was susceptible to ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, and tetracycline. It did not show any hemolytic activity. Regarding its phenotypic results related to its safety properties, genomic analysis revealed that strain DMLL10 did not encode for any toxin genes such as hemolysin found in the same genus. It did not acquire antibiotic resistance genes either. Strain DMLL10 showed protease activity on agar containing NaCl up to 3%. The genome of DMLL10 encoded for protease genes and possessed genes associated with hetero- and homo-lactic fermentative pathways for lactate production. Finally, strain DMLL10 showed antibacterial activity against seven common foodborne pathogens, although bacteriocin genes were not identified from its genome. These results indicates that strain DMLL10 is a novel starter candidate with safety, enzyme activity, and bacteriocin activity. The complete genomic sequence of DMLL10 will contribute to our understanding of the genetic basis of probiotic properties and allow for assessment of the effectiveness of this strain as a starter or probiotic for use in the food industry.

QTL mapping of low-temperature germinability and identification of qLTG1 candidate genes in rice

  • Kim, Sun Ha;Shim, Kyu-Chan;Lee, Hyun-Sook;Le, Anh Quynh;Ahn, Sang-Nag
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.116-116
    • /
    • 2017
  • Low-temperature is one of the environmental stress factors that affect plant growth and development and consequently limit crop productivity. The control of seed germination under low-temperature is organized by many genes which are called quantitative trait loci (QTLs). High germination rate for low-temperature is an important factor of growing rice. Previously, we identified a major QTL controlling low-temperature germinability in rice using 96 introgression lines (ILs) derived from a cross between Oryza rufipogon (Rufi) and the Korean japonica cultivar, 'Hwaseongbyeo (HS)'. A $BC_3F_7$ line (TR5) showed better low-temperature germinability than its recurrent parent. TR5 was crossed with HS to develop a segregating F2:3 populations for the target QTL. Six SSR markers polymorphic between HS and Rufi were used to screen and fine map the qLTG1. The qLTG1 on chromosome 1, which accounted for 55.5% of the total phenotypic variation, confirmed that Rufi allele enhanced the low-temperature germinability. Intervals between markers CRM16 and CRM15, four candidate genes were identified. The identified candidate genes, which are encoded by a protein of unknown function, showed their direct involvement on seed germination at low-temperature. To identify genes targeted by qLTG1, we investigated the expression profiles of these candidate genes and germination behavior of qLTG1 under different stress conditions and compared to HS, Rufi, and TR5 at $13{\pm}2^{\circ}C$ for 3 days after incubation. Furthermore, transgenic rice plants will also be developed to conduct a detailed investigation on low-temperature germinability. Hence, the QTL for low-temperature germinability would be useful in rice breeding programs especially in the development of lines possessing low-temperature germinability.

  • PDF

Genome-wide association studies to identify quantitative trait loci and positional candidate genes affecting meat quality-related traits in pigs

  • Jae-Bong Lee;Ji-Hoon Lim;Hee-Bok Park
    • Journal of Animal Science and Technology
    • /
    • 제65권6호
    • /
    • pp.1194-1204
    • /
    • 2023
  • Meat quality comprises a set of key traits such as pH, meat color, water-holding capacity, tenderness and marbling. These traits are complex because they are affected by multiple genetic and environmental factors. The aim of this study was to investigate the molecular genetic basis underlying nine meat quality-related traits in a Yorkshire pig population using a genome-wide association study (GWAS) and subsequent biological pathway analysis. In total, 45,926 single nucleotide polymorphism (SNP) markers from 543 pigs were selected for the GWAS after quality control. Data were analyzed using a genome-wide efficient mixed model association (GEMMA) method. This linear mixed model-based approach identified two quantitative trait loci (QTLs) for meat color (b*) on chromosome 2 (SSC2) and one QTL for shear force on chromosome 8 (SSC8). These QTLs acted additively on the two phenotypes and explained 3.92%-4.57% of the phenotypic variance of the traits of interest. The genes encoding HAUS8 on SSC2 and an lncRNA on SSC8 were identified as positional candidate genes for these QTLs. The results of the biological pathway analysis revealed that positional candidate genes for meat color (b*) were enriched in pathways related to muscle development, muscle growth, intramuscular adipocyte differentiation, and lipid accumulation in muscle, whereas positional candidate genes for shear force were overrepresented in pathways related to cell growth, cell differentiation, and fatty acids synthesis. Further verification of these identified SNPs and genes in other independent populations could provide valuable information for understanding the variations in pork quality-related traits.

Quantitative Trait Loci and Candidate Genes Affecting Fatty Acid Composition in Cattle and Pig

  • Maharani, Dyah;Jo, Cheo-Run;Jeon, Jin-Tae;Lee, Jun-Heon
    • 한국축산식품학회지
    • /
    • 제31권3호
    • /
    • pp.325-338
    • /
    • 2011
  • Investigations into fatty acid composition in meats are becoming more important due to consumer demand for high quality healthy food. Marker-assisted selection has been applied to livestock to improve meat quality by directly selecting animals for favorable alleles that affect economic traits. Quantitative trait loci affecting fatty acid composition in cattle and pigs were investigated, and five candidate genes (ACACA, FASN, SCD, FABPs, and SREBP-1) were significantly associated with fatty acid composition. The information presented here should provide valuable guidelines to detect causative mutations affecting fatty acid composition in cattle and pigs.

Annotation of Genes Having Candidate Somatic Mutations in Acute Myeloid Leukemia with Whole-Exome Sequencing Using Concept Lattice Analysis

  • Lee, Kye Hwa;Lim, Jae Hyeun;Kim, Ju Han
    • Genomics & Informatics
    • /
    • 제11권1호
    • /
    • pp.38-45
    • /
    • 2013
  • In cancer genome studies, the annotation of newly detected oncogene/tumor suppressor gene candidates is a challenging process. We propose using concept lattice analysis for the annotation and interpretation of genes having candidate somatic mutations in whole-exome sequencing in acute myeloid leukemia (AML). We selected 45 highly mutated genes with whole-exome sequencing in 10 normal matched samples of the AML-M2 subtype. To evaluate these genes, we performed concept lattice analysis and annotated these genes with existing knowledge databases.