DOI QR코드

DOI QR Code

Annotation of Genes Having Candidate Somatic Mutations in Acute Myeloid Leukemia with Whole-Exome Sequencing Using Concept Lattice Analysis

  • Lee, Kye Hwa (Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI) and Systems Biomedical Informatics National Core Research Center, Seoul National University College of Medicine) ;
  • Lim, Jae Hyeun (Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI) and Systems Biomedical Informatics National Core Research Center, Seoul National University College of Medicine) ;
  • Kim, Ju Han (Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI) and Systems Biomedical Informatics National Core Research Center, Seoul National University College of Medicine)
  • Received : 2013.01.28
  • Accepted : 2013.02.22
  • Published : 2013.03.31

Abstract

In cancer genome studies, the annotation of newly detected oncogene/tumor suppressor gene candidates is a challenging process. We propose using concept lattice analysis for the annotation and interpretation of genes having candidate somatic mutations in whole-exome sequencing in acute myeloid leukemia (AML). We selected 45 highly mutated genes with whole-exome sequencing in 10 normal matched samples of the AML-M2 subtype. To evaluate these genes, we performed concept lattice analysis and annotated these genes with existing knowledge databases.

Keywords

References

  1. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008;456:66-72. https://doi.org/10.1038/nature07485
  2. Hebestreit K, Gröttrup S, Emden D, Veerkamp J, Ruckert C, Klein HU, et al. Leukemia gene atlas: a public platform for integrative exploration of genome-wide molecular data. PLoS One 2012;7:e39148. https://doi.org/10.1371/journal.pone.0039148
  3. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med 1999;341:1051-1062. https://doi.org/10.1056/NEJM199909303411407
  4. Frohling S, Scholl C, Gilliland DG, Levine RL. Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005;23:6285-6295. https://doi.org/10.1200/JCO.2005.05.010
  5. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366:1079-1089. https://doi.org/10.1056/NEJMoa1112304
  6. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114:937-951. https://doi.org/10.1182/blood-2009-03-209262
  7. Marcucci G, Haferlach T, Dohner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 2011;29:475-486. https://doi.org/10.1200/JCO.2010.30.2554
  8. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010;363:2424-2433. https://doi.org/10.1056/NEJMoa1005143
  9. Graubert TA, Mardis ER. Genomics of acute myeloid leukemia. Cancer J 2011;17:487-491. https://doi.org/10.1097/PPO.0b013e31823c5652
  10. Tiu RV, Gondek LP, O'Keefe CL, Huh J, Sekeres MA, Elson P, et al. New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. J Clin Oncol 2009;27:5219- 5226. https://doi.org/10.1200/JCO.2009.21.9840
  11. Jostins L, Barrett JC. Genetic risk prediction in complex disease. Hum Mol Genet 2011;20:R182-R188. https://doi.org/10.1093/hmg/ddr378
  12. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754- 1760. https://doi.org/10.1093/bioinformatics/btp324
  13. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  14. Picard. Souceforge.net, 2009. Accessed 2012 Nov 30. Available from: http://picard.sourceforge.net/.
  15. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a Map- Reduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-1303. https://doi.org/10.1101/gr.107524.110
  16. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics 2011;27:2156-2158. https://doi.org/10.1093/bioinformatics/btr330
  17. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010;38:e164. https://doi.org/10.1093/nar/gkq603
  18. Ganter R, Wille R. Formal Concept Analysis: Mathematical Foundations. Berlin: Springer Verlag, 1999.
  19. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011;39:D945-D950. https://doi.org/10.1093/nar/gkq929
  20. Kim J, Chung HJ, Jung Y, Kim KK, Kim JH. BioLattice: a framework for the biological interpretation of microarray gene expression data using concept lattice analysis. J Biomed Inform 2008;41:232-241. https://doi.org/10.1016/j.jbi.2007.10.003
  21. Stelzer G, Dalah I, Stein TI, Satanower Y, Rosen N, Nativ N, et al. In-silico human genomics with GeneCards. Hum Genomics 2011;5:709-717. https://doi.org/10.1186/1479-7364-5-6-709
  22. Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 2010;38:D652-D657. https://doi.org/10.1093/nar/gkp995
  23. Masica DL, Karchin R. Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer Res 2011;71:4550-4561. https://doi.org/10.1158/0008-5472.CAN-11-0180
  24. Scott CS, Richards SJ, Master PS, Kendall J, Limbert HJ, Roberts BE. Flow cytometric analysis of membrane CD11b, CD11c and CD14 expression in acute myeloid leukaemia: relationships with monocytic subtypes and the concept of relative antigen expression. Eur J Haematol 1990;44:24-29.
  25. Liu WB, Han F, Jiang X, Yang LJ, Li YH, Liu Y, et al. ANKRD18A as a novel epigenetic regulation gene in lung cancer. Biochem Biophys Res Commun 2012;429:180-185. https://doi.org/10.1016/j.bbrc.2012.10.116
  26. Amira N, Cancel-Tassin G, Bernardini S, Cochand-Priollet B, Bittard H, Mangin P, et al. Expression in bladder transitional cell carcinoma by real-time quantitative reverse transcription polymerase chain reaction array of 65 genes at the tumor suppressor locus 9q34.1-2: identification of 5 candidates tumor suppressor genes. Int J Cancer 2004;111:539-542. https://doi.org/10.1002/ijc.20283

Cited by

  1. Identification of somatic mutations using whole-exome sequencing in Korean patients with acute myeloid leukemia vol.18, pp.1, 2017, https://doi.org/10.1186/s12881-017-0382-y
  2. Molecular Characterization of Somatic Alterations in Dukes’ B and C Colorectal Cancers by Targeted Sequencing vol.8, pp.1663-9812, 2017, https://doi.org/10.3389/fphar.2017.00465