Browse > Article

Screening of Essential Genes in Staphylococcus aureus N315 Using Comparative Genomics and Allelic Replacement Mutagenesis  

Ko Kwan-Soo (Asian-Pacific Research Foundation for Infectious Diseases (ARFID), Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Lee Ji-Young (Asian-Pacific Research Foundation for Infectious Diseases (ARFID))
Song Jae-Hoon (Asian-Pacific Research Foundation for Infectious Diseases (ARFID), Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Baek Jin-Yang (Asian-Pacific Research Foundation for Infectious Diseases (ARFID))
Oh Won-Sup (Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Chun Jong-Sik (Department of Biological Sciences, Seoul National University)
Yoon Ha-Sik (LG Life Sciences, Inc.)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.4, 2006 , pp. 623-632 More about this Journal
Abstract
To find potential targets of novel antimicrobial agents, we identified essential genes of Staphylococcus aureus N315 by using comparative genomics and allele replacement mutagenesis. By comparing the genome of S. aureus N315 with those of Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus pneumoniae, a total of 481 candidate target genes with similar amino acid sequences with at least three other species by >40% sequence identity were selected. of 481 disrupted candidate genes, 122 genes were identified as essential genes for growth of S. aureus N315. Of these, 51 essential genes were those not identified in any bacterial species, and 24 genes encode proteins of unknown function. Seventeen genes were determined as non-essential although they were identified as essential genes in other strain of S. aureus and other species. We found no significant difference among essential genes between Streptococcus pneumoniae and S. aureus with regard to cellular function.
Keywords
Staphylococcus aureus; essential genes; genomics; allelic replacement mutagenesis; new antimicrobial agent;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Heo, Y.-J., K. S. Ko, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages of various Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 15: 1368-1376   과학기술학회마을
2 Akerley, B. J., E. J. Rubin, V. L. Novick, K. Amaya, N. Judson, and J. J. Mekalanos. 2002. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 99: 966-971
3 Hutchison, C. A., S. N. Pterson, S. R. Gill, R. T. Cline, O. White, C. M. Fraser, H. O. Smith, and J. C. Venter. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286: 2165-2169   DOI   ScienceOn
4 Sassetti, C. M., D. H. Boyd, and E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98: 12712- 12717
5 Bruccoleri, R. E., T. J. Dougherty, and D. B. Davison. 1998. Concordance analysis of microbial genomes. Nucleic Acid Res. 16: 4482-4486
6 Wu, S., H. de Lencastre, A. Sali, and A. Tomasz. 1996. A phosphoglucomutase-like gene essential for the optimal expression of methicilloin resistance in Staphylococcus aureus: Molecular cloning and DNA sequencing. Microb. Drug Resist. 2: 277-286   DOI
7 Hardy, G. G., A. D. Magee, C. L. Ventura, M. J. Caimano, and J. Yother. 2001. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun. 69: 2309-2317   DOI   ScienceOn
8 Song, J.-H., K. S. Ko, J.-Y. Lee, J. Y. Baek, W. S. Oh, H. S. Yoon, J.-Y. Jeong, and J. Chun. 2005. Identification of essential genes in Streptococcus pneumoniae using allelic replacement mutagenesis. Mol. Cells 19: 365-374
9 Thanassi, J. A., S. L. Hartman-Neumann, T. J. Dougherty, B. A. Dougherty, and M. J. Pucci. 2002. Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 30: 3152-3162   DOI   ScienceOn
10 Zalacain, M., S. Biswas, K. A. Ingraham, J. Ambrad, A. Bryant, A. F. Chalker, S. Iordanescu, J. Fan, F. Fan, R. D. Lunsford, K. O'Dwyer, L. M. Palmer, C. So, D. Sylvester, C. Volker, P. Warren, D. McDevitt, J. R. Brown, D. J. Holmes, and M. K. Burnham. 2004. A global approach to identify novel broad-spectrum antibacterial targets among proteins of unknown function. J. Mol. Microbiol. Biotechnol. 6: 109- 126
11 Jordan, I. K., I. B. Rogozin, Y. I. Wolf, and E. V. Koonin. 2002. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 12: 962-968   DOI
12 Kuroda, M., T. Ohta, I. Uchiyama, T. Baba, H. Yuzawa, I. Kobayashi, L. Cui, A. Oguchi, K. Aoki, Y. Nagai, J. Lian, T. Ito, M. Kanamori, H. Matsumaru, A. Maruyama, H. Murakami, A. Hosoyama, Y. Mizutani-Ui, N. K. Takahashi, T. Sawano, R. Inoue, C. Kaito, K. Sekimizu, H. Hirakawa, S. Kuhara, S. Goto, J. Yabuzaki, M. Kanehisa, A. Yamashita, K. Oshima, K. Furuya, C. Yoshino, T. Shiba, M. Hattori, N. Ogasawara, H. Hayashi, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357: 1225-1240   DOI   ScienceOn
13 Senior, A. E., S. Nadanaciva, and J. Weber. 2002. The molecular mechanism of ATP synthesis by $F_1F_0$-ATP synthase. Biochim. Biophys. Acta 1553: 188-211   DOI   ScienceOn
14 Tatusov, R. L., E. V. Koonin, and D. J. Lipman. 1997. A genomic perspective on protein families. Science 278: 631- 637   DOI   ScienceOn
15 Chang, S. and S. H. Cohen. 1979. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol. Gen. Genet. 168: 111-115   DOI
16 Mills, S. D. 2003. The role of genomics in antimicrobial discovery. J. Antimicrob. Chemother. 51: 749-752   DOI   ScienceOn
17 Lee J. C. 1995. Electrotransformation of Staphylococci, p. 209. In Nickoloff, J. A. (ed.), Methods in Molecular Biology, 47. Humana Press, Totowa, NJ
18 Uziel, O., I. Borovok, R. Schreiber, G. Cohen, and Y. Aharonowitz. 2004. Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J. Bacteriol. 186: 326-334   DOI
19 Arigoni, F., F. Talabot, M. Peitsch, M. D. Degerton, E. Meldrum, E. Allet, R. Fish, T. Jamotte, M. L. Curchod, and H. Loferer. 1998. A genome-based approach for the identification of essential bacterial genes. Nat. Biotechnol. 16: 851-858   DOI   ScienceOn
20 Ji, Y., B. Zhang, S. F. Van Horn, P. Warren, G. Woodnutt, M. K. R. Burnham, and M. Rosenberg. 2001. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293: 2266-2269   DOI   ScienceOn
21 Kobayashi, K., S. D. Ehrlich, A. Albertini, G. Amati, K. K. Andersen, M. Arnaud, K. Asai, S. Ashikaga, S. Aymerich, P. Bessieres, F. Boland, S. C. Brignell, S. Bron, K. Bunai, J. Chapuis, L. C. Christiansen, A. Danchin, M. Debarbouille, E. Dervyn, E. Deuerling, K. Devine, S. K. Devine, O. Dreesen, J. Errington, S. Fillinger, S. J. Foster, Y. Fujita, A. Galizzi, R. Gardan, C. Eschevins, T. Fukushima, K. Haga, C. R. Harwood, M. Hecker, D. Hosoya, M. F. Hullo, H. Kakeshita, D. Karamata, Y. Kasahara, F. Kawamura, K. Koga, P. Koski, R. Kuwana, D. Imamura, M. Ishimaru, S. Ishikawa, I. Ishio, D. Le Coq, A. Masson, C. Mauel, R. Meima, R. P. Mellado, A. Moir, S. Moriya, E. Nagakawa, H. Nanamiya, S. Nakai, P. Nygaard, M. Ogura, T. Ohanan, M. O'Reilly, M. O'Rourke, Z. Pragai, H. M. Pooley, G. Rapoport, J. P. Rawlins, L. A. Rivas, C. Rivolta, A. Sadaie, Y. Sadaie, M. Sarvas, T. Sato, H. H. Saxild, E. Scanlan, W. Schumann, J. F. Seegers, J. Sekiguchi, A. Sekowska, S. J. Seror, M. Simon, P. Stragier, R. Studer, H. Takamatsu, T. Tanaka, M. Takeuchi, H. B. Thomaides, V. Vagner, J. M. van Dijl, K. Watabe, A. Wipat, H. Yamamoto, M. Yamamoto, Y. Yamamoto, K. Yamane, K. Yata, K. Yoshida, H. Yoshikawa, U. Zuber, and N. Ogasawara. 2003. Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 100: 4678-4683
22 Forsyth, R. A., R. J. Haselbeck, K. L. Ohlsen, R. T. Yamamoto, H. Xu, J. d. Trawick, D. Wall, L. Wang, V. Brown-Driver, J. M. Froelich, P. King, M. McCarthy, C. Malone, B. Misiner, D. Robbins, Z. Tan, Z. Y. Zhu, G. Carr, D. A. Mosca, C. Zamudio, J. G. Foulkes, and J. W. Zyskind. 2002. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol. 43: 1387- 1400   DOI   ScienceOn
23 Chalker, A. F., H. W. Minehart, N. J. Hughes, K. K. Koretke, M. A. Lonetto, K. K. Brinkman, P. V. Warren, A. Lupas, M. J. Stanhope, J. R. Brown, and P. S. Hoffman. 2001. Systematic identification of selective essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. J. Bacteriol. 183: 1259-1268   DOI   ScienceOn
24 Sakharkar, K. R., M. K. Sakharkar, and V. T. K. Chow. 2004. A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. In Silico Biol. 4: 355-360
25 Tran, S. L. and G. M. Cook. 2005. The $F_1F_0$-ATP synthase of Mycobacterium smegmatis is essential for growth. J. Bacteriol. 187: 5023-5028   DOI   ScienceOn
26 Jung, H. J., K. S. Choi, and D. G. Lee. 2005. Synergistic killing effect of synthetic peptide P20 and cefotaxime on methicillin-resistant nosocomial isolates of Staphylococcus aureus. J. Microbiol. Biotechnol. 15: 1039-1046   과학기술학회마을
27 Zhang, R., Z. Y. Ou, and C. T. Zhang. 2004. DEG: A database of essential genes. Nucleic Acids Res. 32: D271- D272   DOI
28 Kim, Y. C., C. S. Kim, B. H. Cho, and A. J. Anderson. 2004. Major Fe-superoxide dimutase (FeSOD) activity in Pseudomonas putida is essential for survival under conditions of oxidative stress during microbial challenge and nutrient limitation. J. Microbiol. Biotechnol. 14: 859- 862
29 Koh, R., L.-L. Goh, and T.-S. Sim. 2004. Engineering recombinant Streptomyces coelicolor malate synthase with improved thermal properties by directed mutagensis. J. Microbiol. Biotechnol. 14: 547-552