Browse > Article
http://dx.doi.org/10.5851/kosfa.2011.31.3.325

Quantitative Trait Loci and Candidate Genes Affecting Fatty Acid Composition in Cattle and Pig  

Maharani, Dyah (Department of Animal Science and Biotechnology, Chungnam National University)
Jo, Cheo-Run (Department of Animal Science and Biotechnology, Chungnam National University)
Jeon, Jin-Tae (Division of Applied Life Science, Gyeongsang National University)
Lee, Jun-Heon (Department of Animal Science and Biotechnology, Chungnam National University)
Publication Information
Food Science of Animal Resources / v.31, no.3, 2011 , pp. 325-338 More about this Journal
Abstract
Investigations into fatty acid composition in meats are becoming more important due to consumer demand for high quality healthy food. Marker-assisted selection has been applied to livestock to improve meat quality by directly selecting animals for favorable alleles that affect economic traits. Quantitative trait loci affecting fatty acid composition in cattle and pigs were investigated, and five candidate genes (ACACA, FASN, SCD, FABPs, and SREBP-1) were significantly associated with fatty acid composition. The information presented here should provide valuable guidelines to detect causative mutations affecting fatty acid composition in cattle and pigs.
Keywords
quantitative trait locus; candidate genes; fatty acid composition; cattle; pig;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Woolett, L. A., Spady, D. K., and Dietchy, J. M. (1992) Saturated and unsaturated fatty acid independently regulate low density lipoprotein receptor activity and production rate. J. Lipid Res. 33, 77-88.
2 World Health Organization. (2003) WHO/FAO release independent Expert Report on diet and chronic disease. Available from: http://www.who.int/mediacentre/news/releases/2003/pr20/en/. Accessed Dec. 29, 2010.
3 Yang, A., Larsen, T. W., Powell, V. H., and Tume, R. K. (1999) A comparison fat composition of Japanese and Longterm grain-fed Australian steers. Meat Sci. 51:1-9.   DOI   ScienceOn
4 Zhang, S., Knight, T. J., Stalder, K. J., Goodwin, R. N., Lonergan, S. M., and Beitz, D. C. (2007) Effects of breed, sex, and halothane genotype on fatty acid composition of pork longissimus muscle. J. Anim. Sci. 85, 583-591.
5 Zhang, S., Knight, T. J., Reecy, J. M., and Beitz, D. C. (2008) DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition. Anim.Genet. 39, 62-70.   DOI   ScienceOn
6 Zhang, S., Knight, T. J., Reecy, J. M., Wheeler, T. L., Shackelford, S. D., Cundiff, L.V., and Beitz, D. C. (2009) Associations of polymorphisms in the promoter I of bovine acetyl-CoA carboxylase-alpha gene with beef fatty acid composition. Anim. Genet. 41, 417-420.
7 Van Horn, C. G., Caviglia, J. M., Li, L. O., Wang, S., Granger, D. A., and Coleman, R. A. (2005) Characterization of recombinant longchain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 8, 1635-1642.
8 Varona, L., Ovilo, C., Clop, A., Noguera, J. L., Perez-Enciso, M., Coll, A., Folch, J. M., Barragan, C., Toro, M. A., Babot, D., and Sanchez, A. (2002) QTL mapping for growth and carcass traits in an Iberian by Landrace pig intercross: additive, dominant and epistatic effects. Genet. Res. 80, 145-154.
9 Vidal, O. and Amills, M. (2004) Assignment of the fatty acid Coenzyme A ligase, long chain 2 (FACL2) gene to porcine chromosome 15. Anim. Genet. 35, 245.
10 Wakil, S. J. (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28, 4523-4530.   DOI   ScienceOn
11 Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., and Whittington, F. M. (2008) Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 78, 343-358.   DOI   ScienceOn
12 Weimar, J. D., DiRusso, C. C., Delio, R., and Black, P. N. (2002) Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport. J. Biol. Chem. 277, 29369-29376.   DOI   ScienceOn
13 Westerling, D. B. and Hedrick, H. B. (1979) Fatty acid composition of bovine lipids as influenced by diet, sex and anatomical location and relationship to sensory characteristics. J. Anim. Sci. 48, 1343-1348.
14 Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R., and Enser, M. (2004) Effects of fatty acids on meat quality: a review. Meat Sci. 66, 21-32.   DOI   ScienceOn
15 Sanchez, M. P., Iannuccelli, N., Basso, B., Bidanel, J. P., Billon, Y., Gandemer, G., Gilbert, H., Larzul, C., Legault, C., Riquet, J., Milan, D., and Le Roy, P. (2007) Identification of QTL with effects on intramuscular fat content and fatty acid composition in a Duroc x Large White cross. BMC Genet. 8:55-63.
16 Smith, S. B., Lunt, D. K., Chung, K. Y., Choi, C. B., Tume, R. K., and Zembayashi, M. (2006) Adiposity, fatty acid composition, and delta-9 desaturase activity during growth in beef cattle. Anim. Sci. J. 77, 478-486.   DOI   ScienceOn
17 Taniguchi, M., Utsugi, T., Oyama, K., Mannen, H., Kobayashi, M., Tanabe, Y., Ogino, A., and Tsuji, S. (2004) Genotype of stearoyl-coA desaturase is associated with fatty acid composition in Japanese Black cattle. Mamm. Genome 15, 142-148.   DOI
18 Uemoto, Y., Sato, S., Ohnishi, C., Terai, S., Komatsuda, A., and Kobayashi, E. (2009) The effects of single and epistatic quantitative trait loci for fatty acid composition in a Meishan x Duroc crossbred population. J. Anim. Sci. 87, 3470-3476.   DOI   ScienceOn
19 Taylor, J. F., Countiho, L. L., Herring, K. K., Gallagher, D. S., Brennemen, R. A., Burney, N., Sanders, J. O., Turner, J. W., Smith, S. B., Miller, R. K., Savell, J. W., and Davis, S. K. (1998) Candidate gene analysis of GHI for effect on growth and carcass characteristics of cattle. Anim. Genet. 29, 194-201.   DOI
20 Tshipuliso, N. O. M., Alexander, L. J., Geary, T. W., Snelling, W. M., Rule, D. C., Koltes, J. E., Mote, B. E., and Mac- Neil, M. D. (2008) Mapping QTL for fatty acid composition that segregates between the Japanese Black and Limousine cattle breed. S. Afr. J. Anim. Sci. 38, 126-130.
21 Uemoto, Y., Abe, T., Tameoka, N., Hasebe, H., Inoue, K., Nakajima, H., Shoji, N., Kobayashi, M., and Kobayashi, E. (2010) Whole-genome association study for fatty acid composition of oleic acid in Japanese Black cattle. Anim. Genet. 42, 141-148.
22 Urban, T., Mikolasova, R., Kuciel, J., Ernst, M., and Ingr, I. (2002) A study of associations of the H-FABP genotypes with fat and meat production of pigs. J. Appl. Genet. 43, 505-509.
23 Ovilo, C., Perez-Enciso, M., Barragan, C., Clop, A., Rodriquez, C., Oliver, M. A., Toro, M. A., and Noruera, J. L. (2000) A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mamm. Genome 11, 344-346.   DOI
24 Pannier, L., Mullen, A. M., Hamill, R. M., Stapleton, P. C., and Sweeney, T. (2010) Association analysis of single nucleotide polymorphisms in DGAT1, TG and FABP4 genes and intramuscular fat in crossbred Bos taurus cattle. Meat Sci. 85, 515-518.   DOI   ScienceOn
25 Perez-Enciso, M., Clop, A., Noguera, J. L., Ovilo, C., Coll, A., Folch, J. M., Babot, D., Estany, J., Oliver, M. A., Diaz, I., and Sanchez, A. (2000) A QTL on pig chromosome 4 affects fatty acid metabolism: evidence from an Iberian by Landrace intercross. J. Anim. Sci. 78, 2525-2531.
26 Roy, R., Ordovas, L., Zaragoza, P., Romero, A., Moreno, C., Altarriba, J., and Rodellar, C. (2006) Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim. Genet. 37, 215-218.   DOI   ScienceOn
27 Ren, J., Knorr, C., Habermann, F., Fries, R., Huang, L. S., and Brenig, B. (2003) Assignment of the porcine stearoyl- CoA desaturase (SCD) gene to SSC14q27 by fluorescence in situ hybridization and by hybrid panel mapping. Anim. Genet. 34, 471-473.   DOI   ScienceOn
28 Roy, R., Gautier, M., Hayes, H., Laurent, P., Osta, R., Zaragoza, P., Eggen, A., and Rodellar, C. (2001) Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping. Cytogenet. Cell Genet. 93, 141-142.   DOI   ScienceOn
29 Roy, R., Zaragoza, P., Gautier, M., Eggen, A., and Rodellar, C. (2005) Radiation hybrid and genetic linkage mapping of two genes related to fat metabolism in cattle: fatty acid synthase (FASN) and glycerol-3-phosphate acyltransferase mitochondrial (GPAM). Anim. Biotechnol. 16, 1-9.   DOI   ScienceOn
30 Mourot, J. and Hermier, D. (2001) Lipids in monogastric animal meat. Reprod. Nutri. Develop. 41, 109-18.   DOI   ScienceOn
31 Munoz, G., Ovilo, C., Noguera, J. L., Sanchez, A., Rodriguez, C., and Silio, L. (2003) Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping. Anim. Genet. 34, 234-235.   DOI   ScienceOn
32 Munoz, G., Alves, E., Fernandez, A., Ovilo, C., Barragan, C., Estelle, J., Quintanilla, R., Folch, J. M., Silio, L., Rodriguez, M. C., and Fernandez, A. I. (2007) QTL detection on porcine chromosome 12 for fatty-acid composition and association analyses of the fatty acid synthase, gastric inhibitory polypeptide and acetyl-coenzyme A carboxylase alpha genes. Anim. Genet. 38, 639-646.   DOI   ScienceOn
33 Ohsaki, H., Tanaka, A., Hoashi, S., Sasazaki, S., Oyama, K., Taniguchi, M., Mukai, F., and Mannen, H. (2009) Effect of SCD and SREBP genotypes on fatty acid composition in adipose tissue of Japanese Black cattle herds. J. Anim. Sci. 80, 225-232.   DOI   ScienceOn
34 Nii, M., Hayashi, T., Tani, F., Niki, A., Mori, N., Fujishima- Kanaya, N., Komatsu, M., Aikawa, K., Awata, T., and Mikawa, S. (2006) Quantitative trait loci mapping for fatty acid composition traits in perirenal and back fat using a Japanese wild boar x Large White intercross. Anim. Genet. 37, 342-347.   DOI   ScienceOn
35 Noci, F., French, P., Monahan, F. J., and Moloney, A. P. (2007) The fatty acid composition of muscle fat and subcutaneous adipose tissue of grazing heifers supplemented with plant oil-enriched concentrates. J. Anim .Sci. 85, 1062-1073.
36 Ntambi, J. M. (1995) The regulation of stearoyl-CoA desaturase (SCD). Prog. Lipid Res. 34, 139-150.   DOI   ScienceOn
37 Ordovas, L., Roy, R., Pampin, S., Zaragoza, P., Osta, R., Rodriguez-Rey, J. C., and Rodellar, C. (2008) The g.763G>C SNP of the bovine FASN gene affects its promoter activity via Sp-mediated regulation: implications for the bovine lactating mammary gland. Physiol. Genomics 34, 144-148.   DOI   ScienceOn
38 Malau-Aduli, A. E., Siebert, B. D., Bottema, C. D., and Pitchford, W. S. (1998) Breed comparison of the fatty acid composition of muscle phospholipids in Jersey and Limousin cattle. J. Anim. Sci. 76, 766-773.
39 Mao, J., Marcos, S., Davis, S. K., Burzlaff, J., and Seyfert, H. M. (2001) Genomic distribution of three promoters of the bovine gene encoding acetyl-CoA carboxylase alpha and evidence that the nutritionally regulated promoter I contains a repressive element different from that in rat. Biochem. J. 358, 127-135.   DOI
40 Matsuhashi, T., Maruyama, S., Uemoto, Y., Kobayashi, N., Mannen, H., Abe, T., Sakaguchi, S., and Kobayashi, E. (2010) Effects of FASN, SCD, SREBP1 and GH gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle. J. Anim. Sci. 89, 12-22.
41 Melton S. L., Amiri M., Davis, G. W., and Backus, W. R. (1982) Flavor and chemical characteristics of ground beef from grass-, forage-, grain and grain-finished steers. J. Anim. Sci. 55, 77-87.
42 Mercade, A., Estelle, J., Perez-Enciso, M., Varona, L., Silio, L., Noguera, J. L., Sanchez, A., and Folch, J. M. (2006) Characterization of the porcine acyl-CoA synthetase longchain 4 gene and its association with growth and meat quality traits. Anim. Genet. 37, 219-224.   DOI   ScienceOn
43 Michal, J. J., Zhang, Z. W., Gaskins, C. T., and Jiang, Z. (2006) The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Anim. Genet. 37, 400-402.   DOI   ScienceOn
44 Mizoguchi, Y., Watanabe, T., Fujinaka, K., Iwamoto, E., and Sugimoto, Y. (2006) Mapping of quantitative trait loci for carcass traits in a Japanese Black (Wagyu) cattle population. Anim. Genet. 37, 51-54.   DOI   ScienceOn
45 Morris, C. A., Cullen, N. G., Glass, B. C., Hyndman, D. L., Manley, T. R., Hickey, S. M., McEwan, J. C., Pitchford, W. S., Bottema, C. D., and Lee, M. A. (2007) Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genome 18, 64-74.   DOI
46 Jung S., Choe, J. H., Kim, B., Yun, H., Kruk, Z. A., and Jo, C. (2010) The effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 86, 520-526.   DOI   ScienceOn
47 Keys, A., Grande, F., and Anderson, J. T. (1974) Bias and Misrepresentationrevisite perspective in saturated fat. Am. J. Clin. Nutr. 27, 188-212.
48 Kim, J. H., Hwangbo, J., Choi, N. J., Park, H. G., Yoon, D. H., Park, W., Lee, S. H., Park, B. K., and Kim, Y. F. (2007) Effect of dietary supplementation with conjugated linoleic acid, with oleic, linoleic, or linolenic acid, on egg quality characteristics and fat accumulation in the egg yolk. Poultry Sci. 86, 1180-1186.   DOI
49 Kim, Y. C. and Ntambi, J. M. (1999) Regulation of stearoyl- CoA desaturase genes: role in cellular metabolism and preadipocyte differentiation. Biochem. Biophys. Res. Commun. 266, 1-4.   DOI   ScienceOn
50 Kim, Y., Kong, M., Nam, Y. J., and Lee, C. (2006) A quantitative trait locus for oleic fatty acid content on Sus scrofa chromosome 7. J. Hered. 97, 535-537.   DOI   ScienceOn
51 Lee, C., Chung, Y., and Kim, J. H. (2003) Quantitative trait loci mapping for fatty acid contents in the backfat on porcine chromosomes 1, 13, and 18. Mol. Cells 15, 62-67.   과학기술학회마을
52 Lee, S. H., van der Werf, J. H., Park, E. W., Oh, S. J., Gibson, J. P., and Thompson, J. M. (2010) Genetic polymorphisms of the bovine fatty acid binding protein 4 gene are significantly associated with marbling and carcass weight in Hanwoo (Korean cattle). Anim. Genet. 41, 442-444.
53 Li, C. L., Pan, Y. C., Meng, H., Wang, Z. L., and Huang, X. G. (2006) Distributions of polymorphism of ADD1, MC4R, H-FABP gene, associated with IMF and BF in 3 populations in pig. Yi Chuan 28, 159-164.
54 Luo, X. C. and Kim, K. H. (1990) An enhancer element in the house-keeping promoter for acetyl-CoA carboxylase gene. Nucleic Acids Res. 18, 3249-3254.   DOI
55 Gutierrez-Gil, B., Wiener, P., Richardson, R. I., Wood, J. D., and Williams, J. L. (2010) Identification of QTL with effects on fatty acid composition of meat in a Charolais x Holstein cross population. Meat Sci. 85, 721-729.   DOI   ScienceOn
56 Hussain M. M., Shi, J., and Dreizen, P. (2003) Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J. Lipid Res. 44, 22-32.   DOI   ScienceOn
57 Hoashi, S., Ashida, N., Ohsaki, H., Utsugi, T., Sasazaki, S., Taniguchi, M., Oyama, K., Mukai, F., and Mannen, H. (2007) Genotype of bovine sterol regulatory element binding protein-1 (SREBP-1) is associated with fatty acid composition in Japanese Black cattle. Mamm. Genome 18, 880-886.   DOI
58 Hoashi, S., Hinenoya, T., Tanaka, A., Ohsaki, H., Sasazaki, S., Taniguchi, M., Oyama, K., Mukai, F., and Mannen, H. (2008) Association between fatty acid compositions and genotypes of FABP4 and LXR-alpha in Japanese black cattle. BMC Genet. 9, 84-90.
59 Horton, J. D., Bashmakov, Y., Shimomura, I., and Shimano, H. (1998) Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. P. Natl. Acad. Sci. USA 95, 5987-5992.   DOI
60 Jayakumar, A., Chirala, S. S., Chinault, A. C., Baldini, A., Abu-Elheiga, L., and Wakil, S. J. (1994) Isolation and chromosomal mapping of genomic clones encoding the human Fatty Acid Synthase Gene. Genomics 23, 420-424.   DOI   ScienceOn
61 John, L. C., Lunt, D. K., and Smith, S. B. (1991) Fatty acid elongation and desaturation enzyme activities of bovine liver and subcutaneous adipose tissue microsomes. J. Anim. Sci. 69, 1064-1073.
62 Joshi, A. K. and Smith, S. (1993) Construction, expression, and characterization of a mutated animal fatty acid synthase deficient in the dehydrase function. J. Biol. Chem. 268, 22508-22513.
63 Estelle, J., Mercade, A., Perez-Enciso, M., Pena, R. N., Silio, L., Sanchez, A., and Folch, J. M. (2009a) Evaluation of FABP2 as candidate gene for a fatty acid composition QTL in porcine chromosome 8. J. Anim. Breed. Genet. 126, 52-58.   DOI   ScienceOn
64 Gerbens, F., Verburg, F. J., Van Moerkerk, H. T. B., Engel, W., Buist, J. H., Veerkamp, and te Pas, M. F. (2001) Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J. Anim. Sci. 79, 347-354.
65 Estelle, J., Fernandez, A. I., Perez-Enciso, M., Fernandez, A., Rodriguez, C., Sanchez, A., Noguera, J. L., and Folch, J. M. (2009b) A non-synonymous mutation in a conserved site of the MTTP gene is strongly associated with protein activity and fatty acid profile in pigs. Anim Genet. 40, 813-820.
66 Food and Agricultural Organization (2003) Diet, nutrition and the prevention of chronic disease. Report of joint WHO/FAO expert consultant, Rome, Italy.
67 Gallardo, D., Quintanilla, R., Varona, L., Diaz, I., Ramirez, O., Pena, R. N., and Amills, M. (2009) Polymorphism of the pig acetyl-coenzyme A carboxylase alpha gene is associated with fatty acid composition in a Duroc commercial line. Anim. Genet. 40, 410-417.   DOI   ScienceOn
68 Glatz, J. F. C. and van der Vusse, G. J. (1996) Cellular fatty acid binding proteins: their function and physiological significance. Prog. Lipid Res. 35, 243-282.   DOI   ScienceOn
69 Guo, T., Ren, J., Yang, K., Ma, J., Zhang, Z., and Huang, L. (2009) Quantitative trait loci for fatty acid composition in longissimus dorsi and abdominal fat: results from a White Duroc x Erhualian intercross F2 population. Anim. Genet. 40, 185-191.   DOI   ScienceOn
70 Gutierrez-Gil, B., Wiener, P., Nute, G. R., Burton, D., Gill, J. L., Wood, J. D., and Williams, J. L. (2008) Detection of quantitative trait loci for meat quality traits in cattle. Anim. Genet. 39, 51-61.   DOI   ScienceOn
71 Cho, K. H., Kim, M. J., Jeon, G. J., and Chung, H. Y. (2010) Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Mol. Biol. Rep. 38, 2161-2166.
72 Decker, E. A. and Park, Y. (2010) Healthier meat products as functional foods. Meat Sci. 86, 49-55.   DOI   ScienceOn
73 Clop, A., Ovilo, C., Perez-Enciso, M., Cercos, A., Tomas, A., Fernandez, A., Coll, A. , Folch, J. M., Barragan, C., Diaz, I., Oliver, M. A., Varona, L., Silio, L., Sanchez, A., and Noguera, J. L. (2003) Detection of QTL affecting fatty acid composition in the pig. Mamm. Genome 14, 650-656.   DOI
74 Chmurzynska, A. (2006) The multigene family of fatty acidbinding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47, 39-48.   DOI
75 Chmurzynska, A., Szydlowski, M., Stachowiak, M., Stankiewicz, M., and Switonski, M. (2007) Association of a new SNP in promoter region of the porcine FABP3 gene with fatness traits in a polish synthetic line. Anim. Biotechnol. 18, 37-44.   DOI   ScienceOn
76 de Koning, D. J., Janss, L. L., Rattink, A. P., van Oers, P. A., de Vries, B. J., Groenen, M. A., van der Poel, J. J., de Groot, P. N., Brascamp, E. W., and van Arendonk, J. A. (1999) Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 152, 1679-1690.
77 Desvergne, B. and Wahli, W. (1999) Peroxisome proliferator- activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649-688.   DOI   ScienceOn
78 Diana, P., Nichols, P. J., and Thompson, J. M. (1998) The effect of sire breed on the melting point and fatty acid composition of subcutaneous fat in steers. J. Anim. Sci. 76, 87-95.
79 Enser, M. and Wood, J. D. (1993) Effect of time of year on fatty acid composition and melting point of UK lamb. Proceed. 39th International Cong. Meat Sci. Technol., Calgary, Canada, pp 74.
80 Barendse, W., Bunch, R. J., Thomas, M. B., and Harrison, B. E. (2009) A splice site single nucleotide polymorphism of the fatty acid binding protein 4 gene appears to be associated with intramuscular fat deposition in longissimus muscle in Australian cattle. Anim. Genet. 40, 770-773.   DOI   ScienceOn
81 Beuzen, N. D., Stear, M. J., and Chang, K. C. (2000) Molecular markers and their use in animal breeding. The Vet. J. 160, 42-52.   DOI   ScienceOn
82 Bhuiyan, M. S. A., Yu, S. L., Jeon, J. T., Yoon, D., Cho, Y. M., Park, E. W., Kim, E. W., Kim, K. S., and Lee, J. H. (2009) DNA polymorphisms in SREBF1 and FASN genes affect fatty acid composition in Korean cattle (Hanwoo). Asian-Aust. J. Anim. Sci. 22, 765-773.   과학기술학회마을   DOI
83 Bou, R., Codony, R., Tres, A., Decker, E. A., and Guardiola, F. (2009) Dietary strategies to improve nutritional value, oxidative stability, and sensory properties of poultry products. Crit. Rev. Food Sci. Nutr. 49, 800-822.   DOI   ScienceOn
84 Calvo, J. H., Lopez-Corrales, N. L., Anderson, S. I., Skinner, T. M., Marcos, S., Osta, R., Archibald, A. L., and Zaragoza, P. (2000) Assignment of acetyl-coenzyme A carboxylase alpha (ACACA) to pig chromosome 12 (12p13$\rightarrow$p12) by fluorescence in situ hybridization and confirmation by genetic mapping. Cytogenet. Cell Genet. 90, 238-239.   DOI
85 Casas, E., Shackelford, S. D., Keele, J. W., Koohmaraie, M., Smith, T. P., and Stone, R. T. (2003) Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci. 81, 2976-2983.
86 Cho, S., Park, T. S., Yoon, D. H., Cheong, H. S., Namgoong, S., Park, B. L., Lee, H. W., Han, C. S., Kim, E. M., Cheong, I. C., Kim, H., and Shin, H. D. (2008) Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle. BMB Rep. 41, 29-34.   과학기술학회마을   DOI   ScienceOn
87 Alfaia, C. P. M., Alves, S. P., Martins, S. I. V., Costa, A. S. H., Fontes, C. M. G. A., Lemos, J. P. C., Bessa, R. J. B., and Prates, J. A. M. (2009) Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. Food Chem. 114, 939-946.   DOI   ScienceOn
88 Abe, T., Saburi, J., Hasebe, H., Hasebe, T., Misumi, S., Nade, T., Nakajima, H., Shoji, N., Kobayashi, M., and Kobayashi, E. (2009) Novel mutations of the FASN gene and their effect on fatty acid composition in Japanese Black beef. Biochem. Genet. 47, 397-411.   DOI
89 Abu-Elheiga, L., Almarza-Ortega, D. B., Baldini, A., and Wakil, S. J. (1997) Human acetyl-CoA carboxylase 2 Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J. Biol. Chem. 272, 10669-10677.   DOI   ScienceOn
90 Alexander, L. J., Macneil, S. J., Geary, T. W., Snelling, W. M., Rule, D. C., and Scanga, J. A. (2007) Quantitative trait loci with additive effects on palatability and fatty acid composition of meat in a Wagyu-Limousin F2 population. Anim. Genet. 38, 506-513.   DOI   ScienceOn
91 Animal Quantitative Trait Locus (QTL) database (AnimalQTLdb). Available from: http://www.animalgenome.org/cgi-bin/QTLdb/index. Accessed Dec. 20, 2010.
92 Arnyasi, M., Grindflek, E., Javor, A., and Lien, S. (2006) Investigation of two candidate genes for meat quality traits in a quantitative trait locus region on SSC6: the porcine short heterodimer partner and heart fatty acid binding protein genes. J. Anim. Breed. Genet. 123, 198-203.   DOI   ScienceOn
93 Barber, M. C. and Travers, M. T. (1998) Elucidation of a promoter activity that directs the expression of acetyl-CoA carboxylase alpha with an alternative N-terminus in a tissuerestricted fashion. Biochem. J. 333, 17-25.
94 Barber, M. C., Price, N. T., and Travers, M. T. (2005) Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim. Biophys. Acta 1733, 1-28.   DOI   ScienceOn