• Title/Summary/Keyword: cancer targeting

Search Result 580, Processing Time 0.027 seconds

Review of ginsenosides targeting mitochondrial function to treat multiple disorders: Current status and perspectives

  • Huang, Qingxia;Gao, Song;Zhao, Daqing;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.371-379
    • /
    • 2021
  • Mitochondrial dysfunction contributes to the pathogenesis and prognosis of many common disorders, including neurodegeneration, stroke, myocardial infarction, tumor, and metabolic diseases. Ginsenosides, the major bioactive constituents of Panax ginseng (P. ginseng), have been reported to play beneficial roles in the molecular pathophysiology of these diseases by targeting mitochondrial dysfunction. In this review, we first introduce the types of ginsenosides and basic mitochondrial functions. Then, recent findings are summarized on different ginsenosides targeting mitochondria and their key signaling pathways for the treatment of multiple diseases, including neurological disorders, cancer, heart disease, hyperglycemia, and inflammation are summarized. This review may explain the common targets of ginsenosides against multiple diseases and provide new insights into the underlying mechanisms, facilitating research on the clinical application of P. ginseng.

Gene Therapy for Oral Cancer

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.273-280
    • /
    • 2007
  • New treatment approaches are needed to improve the effectiveness of oral cancer treatment, since surgical resection of the tumor in oral region causes various oral dysfunctions. The molecular biology of oral cancer has been progressively delineated. Concurrently, gene therapy techniques have been developed that allow targeting or replacement of dysfunctional genes in cancer cells, offering the potential to treat a wide range of cancer. Oral carcinoma is attractive target for gene therapy because of its accessibility. In this article, we review the current status of gene therapy as applied to oral carcinoma.

Improved Antitumor Efficacy of Hyaluronic Acid-Complexed Paclitaxel Nanoemulsions in Treating Non-Small Cell Lung Cancer

  • Kim, Joo-Eun;Park, Young-Joon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.411-416
    • /
    • 2017
  • Paclitaxel (PTX) is a effectively chemotherapeutic agent which is extensively able to treat the non-small cell lung, pancreatic, breast and other cancers. But it is a practically insoluble drug with water solubility less than $1{\mu}g/mL$, which restricts its therapeutic application. To overcome the problem, hyaluronic acid-complexed paclitaxel nanoemulsions (HPNs) were prepared by ionic complexation of paclitaxel (PTX) nanoemulsions and hyaluronic acid (HA) to specifically target non-small cell lung cancer. HPNs were composed of ${\small{DL}}-{\alpha}$-tocopheryl acetate, soybean oil, polysorbate 80, ferric chloride, and HA and fabricated by high-pressure homogenization. The HPNs were $85.2{\pm}7.55nm$ in diameter and had a zeta potential of $-35.7{\pm}0.25mV$. The encapsulation efficiency was almost 100%, and the PTX content was 3.0 mg/mL. We assessed the in vivo antitumor efficacy of the HPNs by measuring changes in tumor volume and body weight in nude mice transplanted with CD44-overexpressing NCI-H460 xenografts and treated with a bolus dose of saline, $Taxol^{(R)}$, PTX nanoemulsions (PNs), or HPNs at a dose of 25 mg/kg. Suppression of cancer cell growth was higher in the PN- and HPN-treated groups than in the $Taxol^{(R)}$ group. In particular, HPN treatment dramatically inhibited tumor growth, likely because of the specific tumor-targeting affinity of HA for CD44-overexpressed cancer cells. The loss of body weight and organ weight did not vary significantly between the groups. It is suggest that HPNs should be used to effective nanocarrier system for targeting delivery of non-small cell lung cancer overexpressing CD44 and high solubilization of poorly soluble drug.

Cancer stem cell theory and update in oral squamous cell carcinoma (구강 편평세포암종에서의 암줄기세포 이론과 최신 지견)

  • Kim, Deok-Hun;Yun, Jun-Yong;Lee, Ju-Hyun;Kim, Soung-Min;Myoung, Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.2
    • /
    • pp.97-108
    • /
    • 2011
  • Cancer stem cells have stem cell-like features, such as the ability for self-renewal and differentiation but show unlimited growth because they have the lost normal regulation of cell growth. Cancer stem cells and normal stem cells have similar features. They show high motility, diversity of progeny, robust proliferative potential, association with blood vessels, immature expression profiles, nestin expression, epidermal growth factor (EGF)-receptor expression, phosphatase and tensin homolog (PTEN) expression, hedgehog pathway activity, telomerase activity, and Wnt pathway activity. On the other hand, with cancer cells, some of these signaling pathways are abnormally modified. In 1875, Cohnheim suggested the concept of cancer stem cells. Recently, evidence for the existence of cancer stem cells was identified. In 1994, the cancer stem cells' specific cell surface marker for leukemia was identified. Since then, other specific cell surface markers for cancer stem cells in solid tumors (e.g. breast and colon cancer) have been identified. In oral cancer, studies on cancer stem cells have been performed mainly with squamous cell carcinomas. Oral cancer specific cell surface markers, which are genes strongly expressed in oral cancer and cancer stem cell specific side populations, have been identified. Cancer stem cells are resistant to radiotherapy and chemotherapy. Therefore, to eliminate malignant tumors efficiently and reduce the recurrence rate, therapy targeting cancer stem cells needs to be performed. Currently, studies targeting the cancer stem cells' specific signaling pathways, telomerase and tumor vasculatures are being done.

Survival Rate of Cancer Patients of National Merit (국가유공자 암환자의 생존율)

  • Park, Un-Je
    • Health Policy and Management
    • /
    • v.31 no.1
    • /
    • pp.35-45
    • /
    • 2021
  • Background: As a descriptive study targeting 2,068 cancer patients as men of national merit in 2013, this study aims to provide the basic data for systematizing the early diagnosis and treatment of cancer by comparatively analyzing the 5-year survival rate. Methods: This study researched the survival of cancer patients through Electronic Medical Record and Patriots-Veterans Qualification Program, targeting 2,068 newly-diagnosed cancer patients verified in five veterans hospitals and consigned management system. This study verified differences between general characteristics of cancer patients as men of national merit and analyzed their survival rate. Results: The cancer patients as men of national merit were super-aged as their average age was 72.5. In the analysis of general characteristics of five major prevalent cancers, there were statistically significant differences according to age, region, cancer diagnostic path, differentiation, diagnostic method, treatment method, SEER stage, and survival period, except for the types of the man of national merit (p<0.001). The whole survival rate of cancer patients as men of national merit was 50%. The 5-year survival rates of predisposing cancers were shown as prostate cancer (79%), colorectal cancer (64%), gastric cancer (57%), liver cancer (32%), and lung cancer (12%). In the cancer diagnostic path, all the predisposing cancers showed the highest survival rate in medical examination. In the treatment method, the surgery showed the highest survival rate. The cancer patients as men of national merit showed a lower survival rate than the general cancer patients of Korea. Conclusion: It would be needed to guarantee the honorable and happy life through health recovery as special treatment of contribution and sacrifice of super-aged men of national merit by increasing the cancer survival rates through regular checkup, early diagnosis, and high-quality treatment system that could have important effects on the survival rate according to the occurrence of cancers.

Cancer stem cell metabolism: target for cancer therapy

  • Chae, Young Chan;Kim, Jae Ho
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.319-326
    • /
    • 2018
  • Increasing evidence suggests that cancer stem cell (CSC) theory represents an important mechanism underlying the observed failure of existing therapeutic modalities to fully eradicate cancers. In addition to their more established role in maintaining minimal residual disease after treatment and forming the new bulk of the tumor, CSCs might also critically contribute to tumor recurrence and metastasis. For this reason, specific elimination of CSCs may thus represent one of the most important treatment strategies. Emerging evidence has shown that CSCs have a different metabolic phenotype to that of differentiated bulk tumor cells, and these specific metabolic activities directly participate in the process of CSC transformation or support the biological processes that enable tumor progression. Exploring the role of CSC metabolism and the mechanism of the metabolic plasticity of CSCs has become a major focus in current cancer research. The targeting of CSC metabolism may provide new effective therapies to reduce the risk of recurrence and metastasis. In this review, we summarize the most significant discoveries regarding the metabolism of CSCs and highlight recent approaches in targeting CSC metabolism.

MiR-150-5p Suppresses Colorectal Cancer Cell Migration and Invasion through Targeting MUC4

  • Wang, Wei-Hua;Chen, Jie;Zhao, Feng;Zhang, Bu-Rong;Yu, Hong-Sheng;Jin, Hai-Ying;Dai, Jin-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6269-6273
    • /
    • 2014
  • Growing evidence suggests that miR-150-5p has an important role in regulating genesis of various types of cancer. However, the roles and the underlying mechanisms of miR-150-5p in development of colorectal cancer (CRC) remain largely unknown. Transwell chambers were used to analyze effects on cell migration and invasion by miR-150-5p. Quantitative real-time PCR (qRT-PCR), Western blotting and dual-luciferase 3' UTR reporter assay were carried out to identify the target genes of miR-150-5p. In our research, miR-150-5p suppressed CRC cell migration and invasion, and MUC4 was identified as a direct target gene. Its effects were partly blocked by re-expression of MUC4. In conclusiomn, miR-150-5p may suppress CRC metastasis through directly targeting MUC4, highlighting its potential as a novel agent for the treatment of CRC metastasis.

Autophagy-associated Targeting Pathways of Natural Products during Cancer Treatment

  • Zhang, Shu-Fang;Wang, Xiao-Lu;Yang, Xiao-Qi;Chen, Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10557-10563
    • /
    • 2015
  • It is well known that conventional chemotherapy and radiation therapy can result in toxicity to both normal cells and tumor cells, which causes limitations in the application of these therapeutic strategies for cancer control. Novel and effective therapeutic strategies for cancers with no or low toxicity for normal cells are a high priority. Therefore, natural products with anticancer activity have gained more and more attention due to their favorable safety and efficacy profiles. Pre-clinical and clinical studies have demonstrated that several representative natural compounds such as resveratrol, epigallocatechin-3-gallate, curcumin, allicin and ginsenosides have obvious anticancer potential. In this article, we summarize autophagy-associated targeting pathways of such natural products for inducing the death of cancer cells, and discuss the core autophagic pathways involved in cancer treatments. Recent advances in the discovery, evaluation and exploitation of natural compounds as therapeutic agents for cancers will provide references and support in pre-clinical and clinical application of novel natural drugs for the treatment of primary and metastatic tumors in the future.

Growth inhibition of human pancreatic cancer cells by CR2945-targeted liposome

  • Yoon, Na-Young;Kim, Jin-Seok
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.416.3-417
    • /
    • 2002
  • Among the promising cancer therapy is targeting of the drug to tumor cells via receptor specific ligands. CR2945, $\beta$-2-( [2-(8-azaspiro [4.5] dec-8-ylcarbony!)-4.6-dimethylphenyl]amino-2-oxoethyl] -(R)-1-naphthalenepropanoic acid. is known to have an inhibitory effect on a gastrin receptor of colorectal cancer cells. As the human pancreatic cancer cells (BxPC-3) express gastrin receptors. interruption of binding of gastrin with gastrin receptor of human pancreatic cancer cells by CR2945 inhibits the growth of human pancreatic cancer cells. (omitted)

  • PDF

Fast Growing Furious Races for Targeting Fibroblast Growth Factor Receptors

  • Park, Daechan
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.789-791
    • /
    • 2022
  • Targeting fibroblast growth factor receptors (FGFRs) has been slow compared to other targeted cancer therapies for receptor tyrosine kinases, such as epidermal growth factor receptors. The low efficacy and variable response have limited the growth of FGFR inhibitors in clinical use. Nevertheless, recent systematic and genomic approaches have identified the biological conditions for effectively targeting FGFRs and can accelerate the development of targeted drugs. Under clinical and preclinical trials, the inhibitors started fast growing furious races to target FGFRs. Finally, FGFRs will be more actionable and targetable with more precise and effective drugs at the end of the race, passing the finish line.