• Title/Summary/Keyword: cancer genome database

Search Result 43, Processing Time 0.026 seconds

Sex Steroids Regulate Expression of Genes Containing Long Interspersed Elements-1s in Breast Cancer Cells

  • Chaiwongwatanakul, Saichon;Yanatatsaneejit, Pattamawadee;Tongsima, Sissades;Mutirangura, Apiwat;Boonyaratanakornkit, Viroj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4003-4007
    • /
    • 2016
  • Long interspersed elements-1s (LINE-1s) are dispersed all over the human genome. There is evidence that hypomethylation of LINE-1s and levels of sex steroids regulate gene expression leading to cancer development. Here, we compared mRNA levels of genes containing an intragenic LINE-1 in breast cancer cells treated with various sex steroids from Gene Expression Omnibus (GEO), with the gene expression database using chi-square analysis (http://www.ncbi.nlm.nih.gov/geo). We evaluated whether sex steroids influence expression of genes containing an intragenic LINE-1. Three sex steroids at various concentrations, 1 and 10 nM estradiol (E2), 10 nM progesterone (PG) and 10 nM androgen (AN), were assessed. In breast cancer cells treated with 1 or 10 nM E2, a significant percentage of genes containing an intragenic LINE-1 were down-regulated. A highly significant percentage of E2-regulated genes containing an intragenic LINE-1 was down-regulated in cells treated with 1 nM E2 for 3 hours (p<3.70E-25; OR=1.91; 95% CI=2.16-1.69). Similarly, high percentages of PG or AN-regulated genes containing an intragenic LINE-1 wwere also down-regulated in cells treated with 10 nM PG or 10 nM AN for 16 hr (p=9.53E-06; OR=1.65; 95% CI=2.06-1.32 and p=3.81E-14; OR=2.01; 95% CI=2.42-1.67). Interestingly, a significant percentage of AN-regulated genes containing an intragenic LINE-1 was up-regulated in cells treated with 10 nM AN for 16 hr (p=4.03E-02; OR=1.40; 95% CI=1.95-1.01). These findings suggest that intragenic LINE-1s may play roles in sex steroid mediated gene expression in breast cancer cells, which could have significant implications for the development and progression of sex steroid-dependent cancers.

A systemic study on the vulnerability and fatality of prostate cancer patients towards COVID-19 through analysis of the TMPRSS2, CXCL10 and their co-expressed genes

  • Raza, Md. Thosif;Mizan, Shagufta
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.31.1-31.15
    • /
    • 2022
  • A pandemic of respiratory disease named coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is reported prostate cancer patients are susceptible to COVID-19 infection. To understand the possible causes of prostate cancer patients' increased vulnerability and mortality from COVID-19 infection, we focused on the two most important agents, transmembrane protease serine subtype 2 (TMPRSS2) and the C-X-C motif 10 (CXCL10). When SARS-CoV-2 binds to the host cell via S protein-angiotensin-converting enzyme-2 receptor interaction, TMPRSS2 contributes in the proteolytic cleavage of the S protein, allowing the viral and cellular membranes to fuse. CXCL10 is a cytokine found in elevated level in both COVID-19 and cancer-causing cytokine storm. We discovered that TMPRSS2 and CXCL10 are overexpressed in prostate cancer and COVID-19 using the UALCAN and GEPIA2 datasets. The functional importance of TMPRSS2 and CXCL10 in prostate cancer development was then determined by analyzing the frequency of genetic changes in their amino acid sequences using the cBioPortal online portal. Finally, we used the PANTHER database to examine the pathology of the targeted genes. We observed that TMPRSS2 and CXCL10, together with their often co-expressed genes, are important in the binding activity and immune responses in prostate cancer and COVID-19 infection, respectively. Finally, we found that TMPRSS2 and CXCL10 are two putative biomarkers responsible for the increased vulnerability and fatality of prostate cancer patients to COVID-19.

Methylation-sensitive high-resolution melting analysis of the USP44 promoter can detect early-stage hepatocellular carcinoma in blood samples

  • Si-Cho, Kim;Jiwon, Kim;Da-Won, Kim;Yanghee, Choi;Kyunghyun, Park;Eun Ju, Cho;Su Jong, Yu;Jeongsil, Kim-Ha;Young-Joon, Kim
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.553-558
    • /
    • 2022
  • Hepatocellular carcinoma (HCC) is dangerous cancer that often evades early detection because it is asymptomatic and an effective detection method is lacking. For people with chronic liver inflammation who are at high risk of developing HCC, a sensitive detection method for HCC is needed. In a meta-analysis of The Cancer Genome Atlas pan-cancer methylation database, we identified a CpG island in the USP44 promoter that is methylated specifically in HCC. We developed methylation-sensitive high-resolution melting (MS-HRM) analysis to measure the methylation levels of the USP promoter in cell-free DNA isolated from patients. Our MS-HRM assay correctly identified 40% of patients with early-stage HCC, whereas the α-fetoprotein test, which is currently used to detect HCC, correctly identified only 25% of early-stage HCC patients. These results demonstrate that USP44 MS-HRM analysis is suitable for HCC surveillance.

Mining the Proteome of Fusobacterium nucleatum subsp. nucleatum ATCC 25586 for Potential Therapeutics Discovery: An In Silico Approach

  • Habib, Abdul Musaweer;Islam, Md. Saiful;Sohel, Md.;Mazumder, Md. Habibul Hasan;Sikder, Mohd. Omar Faruk;Shahik, Shah Md.
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.255-264
    • /
    • 2016
  • The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1,499 proteins of F. nucleatum, which have no homolog's in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the three dimensional structure of these three proteins. Finally, determination of ligand binding sites of the 2 key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against F. nucleatum.

Identification of novel potential drugs and miRNAs biomarkers in lung cancer based on gene co-expression network analysis

  • Sara Hajipour;Sayed Mostafa Hosseini;Shiva Irani;Mahmood Tavallaie
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.38.1-38.8
    • /
    • 2023
  • Non-small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The present investigation aims to identify the miRNAs with predictive value in NSCLC. The two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the normalized data. Next, miRNA-mRNA interactions were determined. Then, co-expression network analysis was completed using the WGCNA package in R software. The co-expression network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene interaction network was constructed by importing the gene list to dgidb database. A total of 3,033 differentially expressed genes and 58 DEmiRNA were recognized from two datasets. The co-expression network analysis was utilized to build a gene co- expression network. Next, four modules were selected based on the Zsummary score. In the next step, a bipartite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was constructed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; however, these results must validate in further clinical and experimental assessments.

Metabolic Pathways Associated with Kimchi, a Traditional Korean Food, Based on In Silico Modeling of Published Data

  • Shin, Ga Hee;Kang, Byeong-Chul;Jang, Dai Ja
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.222-229
    • /
    • 2016
  • Kimchi is a traditional Korean food prepared by fermenting vegetables, such as Chinese cabbage and radishes, which are seasoned with various ingredients, including red pepper powder, garlic, ginger, green onion, fermented seafood (Jeotgal), and salt. The various unique microorganisms and bioactive components in kimchi show antioxidant activity and have been associated with an enhanced immune response, as well as anti-cancer and anti-diabetic effects. Red pepper inhibits decay due to microorganisms and prevents food from spoiling. The vast amount of biological information generated by academic and industrial research groups is reflected in a rapidly growing body of scientific literature and expanding data resources. However, the genome, biological pathway, and related disease data are insufficient to explain the health benefits of kimchi because of the varied and heterogeneous data types. Therefore, we have constructed an appropriate semantic data model based on an integrated food knowledge database and analyzed the functional and biological processes associated with kimchi in silico. This complex semantic network of several entities and connections was generalized to answer complex questions, and we demonstrated how specific disease pathways are related to kimchi consumption.

Expression of anoctamin 7 (ANO7) is associated with poor prognosis and mucin 2 (MUC2) in colon adenocarcinoma: a study based on TCGA data

  • Chen, Chen;Siripat Aluksanasuwan;Keerakarn Somsuan
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.46.1-46.10
    • /
    • 2023
  • Colon adenocarcinoma (COAD) is the predominant type of colorectal cancer. Early diagnosis and treatment can significantly improve the prognosis of COAD patients. Anoctamin 7 (ANO7), an anion channel protein, has been implicated in prostate cancer and other types of cancer. In this study, we analyzed the expression of ANO7 and its correlation with clinicopathological characteristics among COAD patients using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the University of Alabama at Birmingham CANcer (UALCAN) databases. The GEPIA2, Kaplan-Meier plotter, and the Survival Genie platform were employed for survival analysis. The co-expression network and potential function of ANO7 in COAD were analyzed using GeneFriends, the Database for Annotation, Visualization and Integrated Discovery (DAVID), GeneMANIA, and Pathway Studio. Our data analysis revealed a significant reduction in ANO7 expression levels within COAD tissues compared to normal tissues. Additionally, ANO7 expression was found to be associated with race and histological subtype. The COAD patients exhibiting low ANO7 expression had lower survival rates compared to those with high ANO7 expression. The genes correlated with ANO7 were significantly enriched in proteolysis and mucin type O-glycan biosynthesis pathway. Furthermore, ANO7 demonstrated a direct interaction and a positive co-expression correlation with mucin 2 (MUC2). In conclusion, our findings suggest that ANO7 might serve as a potential prognostic biomarker and potentially plays a role in proteolysis and mucin biosynthesis in the context of COAD.

Publication trends of somatic mutation and recombination tests research: a bibliometric analysis (1984-2020)

  • Tagorti, Ghada;Kaya, Bulent
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.10.1-10.15
    • /
    • 2022
  • Human exposure to pollutants has been on the rise. Thus, researchers have been focused on understanding the effect of these compounds on human health, especially on the genetic information by using various tests, among them the somatic mutation and recombination tests (SMARTs). It is a sensitive and accurate method applicable to genotoxicity analysis. Here, a comprehensive bibliometric analysis of SMART assays in genotoxicity studies was performed to assess publication trends of this field. Data were extracted from the Web of Science database and analyzed by the bibliometric tools HistCite, Biblioshiny (RStudio), VOSViewer, and CiteSpace. Results have shown an increase in the last 10 years in terms of publication. A total of 392 records were published in 96 sources mainly from Brazil, Spain, and Turkey. Research collaboration networks between countries and authors were performed. Based on document co-citation, five large research clusters were identified and analyzed. The youngest research frontier emphasized on nanoparticles. With this study, how research trends evolve over years was demonstrated. Thus, international collaboration could be enhanced, and a promising field could be developed.

Expression of Sodium-Iodide Symporter Depending on Mutational Status and Lymphocytic Thyroiditis in Papillary Thyroid Carcinoma

  • Song, Young Shin;Park, Young Joo
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.152-159
    • /
    • 2018
  • Background and Objectives: Sodium-iodine symporter (NIS) is a marker for the degree of differentiation in thyroid cancer. The genetic factors or microenvironment surrounding tumors can affect transcription of NIS. In this study, we investigated the NIS mRNA expression according to mutational status and coexistent lymphocytic thyroiditis in papillary thyroid cancer (PTC). Materials and Methods: The RNA expression levels of NIS in the samples from database of The Caner Genome Atlas (TCGA; n=494) and our institute (n=125) were analyzed. Results: The PTCs with the $BRAF^{V600E}$ mutation and the coexistence of $BRAF^{V600E}$ and TERT promoter mutations showed significantly lower expression of NIS (p<0.001, respectively), and those with BRAF-like molecular subtype also had reduced expression of NIS (p<0.001). NIS expression showed a positive correlation with thyroid differentiation score (r=0.593, p<0.001) and negative correlations with expressions of genes involved in ERK signaling (r=-0.164, p<0.001) and GLUT-1 gene (r=-0.204, p<0.001). The PTCs with lymphocytic thyroiditis showed significantly higher NIS expression (p=0.013), regardless of mutational status. Conclusion: The NIS expression was reduced by the $BRAF^{V600E}$ mutation and MAPK/ERK pathway activation, but restored by the presence of lymphocytic thyroiditis.

Identification and Validation of Circulating MicroRNA Signatures for Breast Cancer Early Detection Based on Large Scale Tissue-Derived Data

  • Yu, Xiaokang;Liang, Jinsheng;Xu, Jiarui;Li, Xingsong;Xing, Shan;Li, Huilan;Liu, Wanli;Liu, Dongdong;Xu, Jianhua;Huang, Lizhen;Du, Hongli
    • Journal of Breast Cancer
    • /
    • v.21 no.4
    • /
    • pp.363-370
    • /
    • 2018
  • Purpose: Breast cancer is the most commonly occurring cancer among women worldwide, and therefore, improved approaches for its early detection are urgently needed. As microRNAs (miRNAs) are increasingly recognized as critical regulators in tumorigenesis and possess excellent stability in plasma, this study focused on using miRNAs to develop a method for identifying noninvasive biomarkers. Methods: To discover critical candidates, differential expression analysis was performed on tissue-originated miRNA profiles of 409 early breast cancer patients and 87 healthy controls from The Cancer Genome Atlas database. We selected candidates from the differentially expressed miRNAs and then evaluated every possible molecular signature formed by the candidates. The best signature was validated in independent serum samples from 113 early breast cancer patients and 47 healthy controls using reverse transcription quantitative real-time polymerase chain reaction. Results: The miRNA candidates in our method were revealed to be associated with breast cancer according to previous studies and showed potential as useful biomarkers. When validated in independent serum samples, the area under curve of the final miRNA signature (miR-21-3p, miR-21-5p, and miR-99a-5p) was 0.895. Diagnostic sensitivity and specificity were 97.9% and 73.5%, respectively. Conclusion: The present study established a novel and effective method to identify biomarkers for early breast cancer. And the method, is also suitable for other cancer types. Furthermore, a combination of three miRNAs was identified as a prospective biomarker for breast cancer early detection.