DOI QR코드

DOI QR Code

Expression of anoctamin 7 (ANO7) is associated with poor prognosis and mucin 2 (MUC2) in colon adenocarcinoma: a study based on TCGA data

  • Chen, Chen (Medical Science Graduate Program, Faculty of Medical Science, Naresuan University) ;
  • Siripat Aluksanasuwan (Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University) ;
  • Keerakarn Somsuan (Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University)
  • Received : 2023.09.13
  • Accepted : 2023.11.21
  • Published : 2023.12.31

Abstract

Colon adenocarcinoma (COAD) is the predominant type of colorectal cancer. Early diagnosis and treatment can significantly improve the prognosis of COAD patients. Anoctamin 7 (ANO7), an anion channel protein, has been implicated in prostate cancer and other types of cancer. In this study, we analyzed the expression of ANO7 and its correlation with clinicopathological characteristics among COAD patients using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the University of Alabama at Birmingham CANcer (UALCAN) databases. The GEPIA2, Kaplan-Meier plotter, and the Survival Genie platform were employed for survival analysis. The co-expression network and potential function of ANO7 in COAD were analyzed using GeneFriends, the Database for Annotation, Visualization and Integrated Discovery (DAVID), GeneMANIA, and Pathway Studio. Our data analysis revealed a significant reduction in ANO7 expression levels within COAD tissues compared to normal tissues. Additionally, ANO7 expression was found to be associated with race and histological subtype. The COAD patients exhibiting low ANO7 expression had lower survival rates compared to those with high ANO7 expression. The genes correlated with ANO7 were significantly enriched in proteolysis and mucin type O-glycan biosynthesis pathway. Furthermore, ANO7 demonstrated a direct interaction and a positive co-expression correlation with mucin 2 (MUC2). In conclusion, our findings suggest that ANO7 might serve as a potential prognostic biomarker and potentially plays a role in proteolysis and mucin biosynthesis in the context of COAD.

Keywords

Acknowledgement

This project is funded by National Research Council of Thailand (NRCT) (Grant No. N42A660849) and Mae Fah Luang University.

References

  1. Marmol I, Sanchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 2017; 18:197.
  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209-249. https://doi.org/10.3322/caac.21660
  3. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017;66:683-691. https://doi.org/10.1136/gutjnl-2015-310912
  4. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 2014;383:1490-1502.  https://doi.org/10.1016/S0140-6736(13)61649-9
  5. Tian Y, Schreiber R, Kunzelmann K. Anoctamins are a family of Ca2+-activated Cl- channels. J Cell Sci 2012;125:4991-4998. https://doi.org/10.1242/jcs.109553
  6. Wang T, Wang H, Yang F, Gao K, Luo S, Bai L, et al. Honokiol inhibits proliferation of colorectal cancer cells by targeting anoctamin 1/TMEM16A Ca(2+) -activated Cl(-) channels. Br J Pharmacol 2021;178:4137-4154. https://doi.org/10.1111/bph.15606
  7. Li C, Cai S, Wang X, Jiang Z. Identification and characterization of ANO9 in stage II and III colorectal carcinoma. Oncotarget 2015;6:29324-29334.  https://doi.org/10.18632/oncotarget.4979
  8. Kaikkonen E, Rantapero T, Zhang Q, Taimen P, Laitinen V, Kallajoki M, et al. ANO7 is associated with aggressive prostate cancer. Int J Cancer 2018;143:2479-2487. https://doi.org/10.1002/ijc.31746
  9. Wahlstrom G, Heron S, Knuuttila M, Kaikkonen E, Tulonen N, Metsala O, et al. The variant rs77559646 associated with aggressive prostate cancer disrupts ANO7 mRNA splicing and protein expression. Hum Mol Genet 2022;31:2063-2077. https://doi.org/10.1093/hmg/ddac012
  10. Marx A, Koopmann L, Hoflmayer D, Buscheck F, Hube-Magg C, Steurer S, et al. Reduced anoctamin 7 (ANO7) expression is a strong and independent predictor of poor prognosis in prostate cancer. Cancer Biol Med 2021;18:245-255. https://doi.org/10.20892/j.issn.2095-3941.2019.0324
  11. Cancer Genome Atlas Research Network; Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013;45:1113-1120. https://doi.org/10.1038/ng.2764
  12. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 2019;47:W556-W560. https://doi.org/10.1093/nar/gkz430
  13. Chandrashekar DS, Bashel B, Balasubramanya SA, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017;19:649-658. https://doi.org/10.1016/j.neo.2017.05.002
  14. Lanczky A, Gyorffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res 2021;23:e27633.
  15. Dwivedi B, Mumme H, Satpathy S, Bhasin SS, Bhasin M. Survival Genie, a web platform for survival analysis across pediatric and adult cancers. Sci Rep 2022;12:3069.
  16. Raina P, Guinea R, Chatsirisupachai K, Lopes I, Farooq Z, Guinea C, et al. GeneFriends: gene co-expression databases and tools for humans and model organisms. Nucleic Acids Res 2023;51:D145-D158. https://doi.org/10.1093/nar/gkac1031
  17. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57. https://doi.org/10.1038/nprot.2008.211
  18. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022;50:W216-W221. https://doi.org/10.1093/nar/gkac194
  19. Li J, Miao B, Wang S, Dong W, Xu H, Si C, et al. Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization. Brief Bioinform 2022;23:bbac261.
  20. Nikitin A, Egorov S, Daraselia N, Mazo I. Pathway studio--the analysis and navigation of molecular networks. Bioinformatics 2003;19:2155-2157. https://doi.org/10.1093/bioinformatics/btg290
  21. Cox KE, Liu S, Lwin TM, Hoffman RM, Batra SK, Bouvet M. The mucin family of proteins: candidates as potential biomarkers for colon cancer. Cancers (Basel) 2023;15:1491.
  22. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 2010;38:W214-W220. https://doi.org/10.1093/nar/gkq537
  23. Guo J, Wang D, Dong Y, Gao X, Tong H, Liu W, et al. ANO7: Insights into topology, function, and potential applications as a biomarker and immunotherapy target. Tissue Cell 2021;72:101546.
  24. Li Y, Wang X, Vural S, Mishra NK, Cowan KH, Guda C. Exome analysis reveals differentially mutated gene signatures of stage, grade and subtype in breast cancers. PLoS One 2015;10:e0119383.
  25. Zhu J, Wu K, Lin Z, Bai S, Wu J, Li P, et al. Identification of susceptibility gene mutations associated with the pathogenesis of familial nonmedullary thyroid cancer. Mol Genet Genomic Med 2019;7:e1015.
  26. Bae JS, Lee JW, Yoo JE, Joung JG, Yoo KH, Koo HH, et al. Genome-wide association study for the identification of novel genetic variants associated with the risk of neuroblastoma in Korean children. Cancer Res Treat 2020;52:1251-1261. https://doi.org/10.4143/crt.2020.140
  27. Herszenyi L, Barabas L, Hritz I, Istvan G, Tulassay Z. Impact of proteolytic enzymes in colorectal cancer development and progression. World J Gastroenterol 2014;20:13246-13257. https://doi.org/10.3748/wjg.v20.i37.13246
  28. Filippou PS, Karagiannis GS, Musrap N, Diamandis EP. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer. Crit Rev Clin Lab Sci 2016;53:277-291. https://doi.org/10.3109/10408363.2016.1154643
  29. Avgeris M, Scorilas A. Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin Ther Targets 2016;20:801-818. https://doi.org/10.1517/14728222.2016.1147560
  30. Koistinen H, Kunnapuu J, Jeltsch M. KLK3 in the regulation of angiogenesis-tumorigenic or not? Int J Mol Sci 2021;22:13545.
  31. Perez-Ibave DC, Burciaga-Flores CH, Elizondo-Riojas MA. Prostate-specific antigen (PSA) as a possible biomarker in non-prostatic cancer: a review. Cancer Epidemiol 2018;54:48-55. https://doi.org/10.1016/j.canep.2018.03.009
  32. Levesque M, Hu H, D'Costa M, Diamandis EP. Prostate-specific antigen expression by various tumors. J Clin Lab Anal 1995;9:123-128. https://doi.org/10.1002/jcla.1860090209
  33. Wang Y, Harada M, Yano H, Ogasawara S, Tanaka M, Yamada A, et al. Prostate-specific antigen-reactive cytotoxic T lymphocyte precursors in colon cancer patients. Oncol Rep 2006;15:317-321. https://doi.org/10.3892/or.15.2.317
  34. Duraker N, Caynak ZC, Trabulus DC. Free/total serum prostate-specific antigen ratio in women with colorectal cancer has prognostic significance. J Gastrointest Cancer 2017;48:8-12. https://doi.org/10.1007/s12029-016-9859-8
  35. Zhang X, Vos HR, Tao W, Stoorvogel W. Proteomic profiling of two distinct populations of extracellular vesicles isolated from human seminal plasma. Int J Mol Sci 2020;21:7957.
  36. Brockhausen I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep 2006;7:599-604. https://doi.org/10.1038/sj.embor.7400705
  37. Krishn SR, Kaur S, Smith LM, Johansson SL, Jain M, Patel A, et al. Mucins and associated glycan signatures in colon adenoma-carcinoma sequence: Prospective pathological implication(s) for early diagnosis of colon cancer. Cancer Lett 2016;374:304-314. https://doi.org/10.1016/j.canlet.2016.02.016
  38. Kang H, Min BS, Lee KY, Kim NK, Kim SN, Choi J, et al. Loss of E-cadherin and MUC2 expressions correlated with poor survival in patients with stages II and III colorectal carcinoma. Ann Surg Oncol 2011;18:711-719. https://doi.org/10.1245/s10434-010-1338-z
  39. Elzagheid A, Emaetig F, Buhmeida A, Laato M, El-Faitori O, Syrjanen K, et al. Loss of MUC2 expression predicts disease recurrence and poor outcome in colorectal carcinoma. Tumour Biol 2013;34:621-628. https://doi.org/10.1007/s13277-012-0588-8
  40. Iwaya M, Uehara T, Yoshizawa A, Kobayashi Y, Momose M, Honda T, et al. A case of primary signet-ring cell/histiocytoid carcinoma of the eyelid: immunohistochemical comparison with the normal sweat gland and review of the literature. Am J Dermatopathol 2012;34:e139-e145. https://doi.org/10.1097/DAD.0b013e3182590ec1