DOI QR코드

DOI QR Code

Publication trends of somatic mutation and recombination tests research: a bibliometric analysis (1984-2020)

  • Tagorti, Ghada (Department of Biology, Faculty of Sciences, Akdeniz University) ;
  • Kaya, Bulent (Department of Biology, Faculty of Sciences, Akdeniz University)
  • Received : 2021.12.31
  • Accepted : 2022.01.18
  • Published : 2022.03.31

Abstract

Human exposure to pollutants has been on the rise. Thus, researchers have been focused on understanding the effect of these compounds on human health, especially on the genetic information by using various tests, among them the somatic mutation and recombination tests (SMARTs). It is a sensitive and accurate method applicable to genotoxicity analysis. Here, a comprehensive bibliometric analysis of SMART assays in genotoxicity studies was performed to assess publication trends of this field. Data were extracted from the Web of Science database and analyzed by the bibliometric tools HistCite, Biblioshiny (RStudio), VOSViewer, and CiteSpace. Results have shown an increase in the last 10 years in terms of publication. A total of 392 records were published in 96 sources mainly from Brazil, Spain, and Turkey. Research collaboration networks between countries and authors were performed. Based on document co-citation, five large research clusters were identified and analyzed. The youngest research frontier emphasized on nanoparticles. With this study, how research trends evolve over years was demonstrated. Thus, international collaboration could be enhanced, and a promising field could be developed.

Keywords

References

  1. Bilal M, Rasheed T, Nabeel F, Iqbal HM, Zhao Y. Hazardous contaminants in the environment and their laccase-assisted degradation: a review. J Environ Manage 2019;234:253-264. https://doi.org/10.1016/j.jenvman.2019.01.001
  2. Kopp B, Zalko D, Audebert M. Genotoxicity of 11 heavy metals detected as food contaminants in two human cell lines. Environ Mol Mutagen 2018;59:202-210. https://doi.org/10.1002/em.22157
  3. Aiassa D. Genotoxic risk in human populations exposed to pesticides. In: Genotoxicity: A Predictable Risk to Our Actual World (Larramendy ML, Soloneski S, eds.). London: InTech, 2018. pp. 95-112.
  4. Khan S, Anas M, Malik A. Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicol Rep 2019;6:193-201. https://doi.org/10.1016/j.toxrep.2019.02.002
  5. Hayes AW, Sahu SC. Genotoxicity of engineered nanomaterials found in the human environment. Curr Opin Toxicol 2020;19:68-71. https://doi.org/10.1016/j.cotox.2019.12.003
  6. OECD Guidelines for the Testing of Chemicals. Test No. 487: In Vitro Mammalian Cell Micronucleus Test. Paris: Organisation for Economic Co-operation and Development, 2016.
  7. Barnes JL, Zubair M, John K, Poirier MC, Martin FL. Carcinogens and DNA damage. Biochem Soc Trans 2018;46:1213-1224. https://doi.org/10.1042/BST20180519
  8. Tiwari V, Wilson DM 3rd. DNA damage and associated DNA repair defects in disease and premature aging. Am J Hum Genet 2019;105:237-257. https://doi.org/10.1016/j.ajhg.2019.06.005
  9. Corvi R, Madia F. In vitro genotoxicity testing: can the performance be enhanced? Food Chem Toxicol 2017;106:600-608. https://doi.org/10.1016/j.fct.2016.08.024
  10. Drosopoulou E, Vlastos D, Efthimiou I, Kyrizaki P, Tsamadou S, Anagnostopoulou M, et al. In vitro and in vivo evaluation of the genotoxic and antigenotoxic potential of the major Chios mastic water constituents. Sci Rep 2018;8:12200. https://doi.org/10.1038/s41598-018-29810-y
  11. Graf U, Wurgler FE, Katz AJ, Frei H, Juon H, Hall CB, et al. Somatic mutation and recombination test in Drosophila melanogaster. Environ Mutagen 1984;6:153-188. https://doi.org/10.1002/em.2860060206
  12. Wurgler FE, Vogel EW. In vivo mutagenicity testing using somatic cells of Drosophila melanogaster. In: Chemical Mutagens, Principles and Methods for Their Detection. Vol. 10 (Serres FJ, ed.). New York: Plenum Press, 1986. pp. 1-72.
  13. Spano MA, Frei H, Wurgler FE, Graf U. Recombinagenic activity of four compounds in the standard and high bioactivation crosses of Drosophila melanogaster in the wing spot test. Mutagenesis 2001;16:385-394. https://doi.org/10.1093/mutage/16.5.385
  14. Graf U, Frei H, Kagi A, Katz AJ, Wurgler FE. Thirty compounds tested in the Drosophila wing spot test. Mutat Res 1989;222:359-373. https://doi.org/10.1016/0165-1218(89)90112-2
  15. Frolich A, Wurgler FE. New tester strains with improved bioactivation capacity for the Drosophila wing-spot test. Mutat Res 1989;216:179-187. https://doi.org/10.1016/0165-1161(89)90003-4
  16. Vogel EW, Nivard MJ, Zijlstra JA. Variation of spontaneous and induced mitotic recombination in different Drosophila populations: a pilot study on the effects of polyaromatic hydrocarbons in six newly constructed tester strains. Mutat Res 1991;250:291-298. https://doi.org/10.1016/0027-5107(91)90184-P
  17. Gaivao I, Ferreira J, Maria Sierra L. The w/w + somatic mutation and recombination test (SMART) of Drosophila melanogaster for detecting antigenotoxic activity. In: Genotoxicity and Mutagenicity: Mechanisms and Test Methods (Soloneski S, Larramendy ML, eds.). London: IntechOpen, 2021. pp. 111-145.
  18. Kaya B, Marcos R, Yanikoglu A, Creus A. Evaluation of the genotoxicity of four herbicides in the wing spot test of Drosophila melanogaster using two different strains. Mutat Res 2004;557:53-62. https://doi.org/10.1016/j.mrgentox.2003.09.010
  19. de Morais CR, Carvalho SM, Carvalho Naves MP, Araujo G, de Rezende AA, Bonetti AM, et al. Mutagenic, recombinogenic and carcinogenic potential of thiamethoxam insecticide and formulated product in somatic cells of Drosophila melanogaster. Chemosphere 2017;187:163-172. https://doi.org/10.1016/j.chemosphere.2017.08.108
  20. Castaneda-Sortibran AN, Flores-Loyola C, Martinez-Martinez V, Ramirez-Corchado MF, Rodriguez-Arnaiz R. Herbicide genotoxicity revealed with the somatic wing spot assay of Drosophila melanogaster. Rev Int Contam Ambient 2019;35:295-305. https://doi.org/10.20937/RICA.2019.35.02.03
  21. Alaraby M, Hernandez A, Marcos R. Copper oxide nanoparticles and copper sulphate act as antigenotoxic agents in Drosophila melanogaster. Environ Mol Mutagen 2017;58:46-55. https://doi.org/10.1002/em.22068
  22. Avalos A, Haza AI, Mateo D, Morales P. In vitro and in vivo genotoxicity assessment of gold nanoparticles of different sizes by comet and SMART assays. Food Chem Toxicol 2018;120:81-88. https://doi.org/10.1016/j.fct.2018.06.061
  23. Fernandez-Bedmar Z, Anter J, Alonso Moraga A. Anti/genotoxic, longevity inductive, cytotoxic, and clastogenic-related bioactivities of tomato and lycopene. Environ Mol Mutagen 2018;59:427-437. https://doi.org/10.1002/em.22185
  24. Sukprasansap M, Sridonpai P, Phiboonchaiyanan PP. Eggplant fruits protect against DNA damage and mutations. Mutat Res 2019;813:39-45. https://doi.org/10.1016/j.mrfmmm.2018.12.004
  25. Ertugrul H, Yalcin B, Gunes M, Kaya B. Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays. Drug Chem Toxicol 2020;43:279-286. https://doi.org/10.1080/01480545.2019.1585444
  26. Ferreira J, Marques A, Abreu H, Pereira R, Rego A, Pacheco M, et al. Red seaweeds Porphyra umbilicalis and Grateloupia turuturu display antigenotoxic and longevity-promoting potential in Drosophila melanogaster. Eur J Phycol 2019;54:519-530. https://doi.org/10.1080/09670262.2019.1623926
  27. de Moraes Filho AV, de Jesus Silva Carvalho C, Vercosa CJ, Goncalves MW, Rohde C, de Melo ES, et al. In vivo genotoxicity evaluation of efavirenz (EFV) and tenofovir disoproxil fumarate (TDF) alone and in their clinical combinations in Drosophila melanogaster. Mutat Res Genet Toxicol Environ Mutagen 2017;820:31-38. https://doi.org/10.1016/j.mrgentox.2017.05.012
  28. Naves MP, de Morais CR, Spano MA, de Rezende AA. Mutagenicity and recombinogenicity evaluation of bupropion hydrochloride and trazodone hydrochloride in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2019;131:110557. https://doi.org/10.1016/j.fct.2019.06.004
  29. Chen-Chen L, de Jesus Silva Carvalho C, de Moraes Filho AV, Veras JH, Cardoso CG, Bailao E, et al. Toxicity and genotoxicity induced by abacavir antiretroviral medication alone or in combination with zidovudine and/or lamivudine in Drosophila melanogaster. Hum Exp Toxicol 2019;38:446-454. https://doi.org/10.1177/0960327118818248
  30. Ellegaard O, Wallin JA. The bibliometric analysis of scholarly production: how great is the impact? Scientometrics 2015;105:1809-1831. https://doi.org/10.1007/s11192-015-1645-z
  31. van Nunen K, Li J, Reniers G, Ponnet K. Bibliometric analysis of safety culture research. Saf Sci 2018;108:248-258. https://doi.org/10.1016/j.ssci.2017.08.011
  32. Liu W, Tang L, Gu M, Hu G. Feature report on China: a bibliometric analysis of China-related articles. Scientometrics 2015;102:503-517. https://doi.org/10.1007/s11192-014-1371-y
  33. Pons P, Latapy M. Computing communities in large networks using random walks. In: Computer and Information Sciences - ISCIS 2005. Lecture Notes in Computer Science, Vol. 3733 (Yolum P, Gungor T, Gurgen F, Ozturan C, eds.). Berlin: Springer, 2005. pp. 284-293.
  34. Garfield E, Paris SW, Stock WG. HistCite: a software tool for informetric analysis of citation linkage. Information-Wissenschaft und Praxis 2006;57:391-400.
  35. Aria M, Cuccurullo C. bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr 2017;11:959-975. https://doi.org/10.1016/j.joi.2017.08.007
  36. Liu Y, Sun T, Yang L. Evaluating the performance and intellectual structure of construction and demolition waste research during 2000-2016. Environ Sci Pollut Res Int 2017;24:19259-19266. https://doi.org/10.1007/s11356-017-9598-9
  37. Wei F, Grubesic TH, Bishop BW. Exploring the GIS knowledge domain using CiteSpace. The Prof Geogr 2015;67:374-384. https://doi.org/10.1080/00330124.2014.983588
  38. Chen C. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 2006;57:359-377. https://doi.org/10.1002/asi.20317
  39. Chen C, Chen Y, Horowitz M, Hou H, Liu Z, Pellegrino D. Towards an explanatory and computational theory of scientific discovery. J Informetr 2009;3:191-209. https://doi.org/10.1016/j.joi.2009.03.004
  40. Frei H, Wurgler FE. Optimal experimental design and sample size for the statistical evaluation of data from somatic mutation and recombination tests (SMART) in Drosophila. Mutat Res 1995;334:247-258. https://doi.org/10.1016/0165-1161(95)90018-7
  41. Graf U, van Schaik N. Improved high bioactivation cross for the wing somatic mutation and recombination test in Drosophila melanogaster. Mutat Res 1992;271:59-67. https://doi.org/10.1016/0165-1161(92)90032-H
  42. Frei H, Clements J, Howe D, Wurgler FE. The genotoxicity of the anti-cancer drug mitoxantrone in somatic and germ cells of Drosophila melanogaster. Mutat Res 1992;279:21-33. https://doi.org/10.1016/0165-1218(92)90262-X
  43. Frei H, Wurgler FE. Induction of somatic mutation and recombination by four inhibitors of eukaryotic topoisomerases assayed in the wing spot test of Drosophila melanogaster. Mutagenesis 1996;11:315-325. https://doi.org/10.1093/mutage/11.4.315
  44. Saner C, Weibel B, Wurgler FE, Sengstag C. Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae. Environ Mol Mutagen 1996;27:46-58. https://doi.org/10.1002/(SICI)1098-2280(1996)27:1<46::AID-EM7>3.0.CO;2-C
  45. Moraga AA, Graf U. Genotoxicity testing of antiparasitic nitrofurans in the Drosophila wing somatic mutation and recombination test. Mutagenesis 1989;4:105-110. https://doi.org/10.1093/mutage/4.2.105
  46. Frolich A, Wurgler FE. Drosophila wing-spot test: improved detectability of genotoxicity of polycyclic aromatic hydrocarbons. Mutat Res 1990;234:71-80. https://doi.org/10.1016/0165-1161(90)90033-K
  47. Frei H, Wurgler FE. Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive result. Mutat Res 1988;203:297-308. https://doi.org/10.1016/0165-1161(88)90019-2
  48. Lindsley DL, Zimm GG. The Genome of Drosophila melanogaster. San Diego: Academic Press, 1992.
  49. Demir E, Vales G, Kaya B, Creus A, Marcos R. Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 2011;5:417-424. https://doi.org/10.3109/17435390.2010.529176
  50. Carmona ER, Guecheva TN, Creus A, Marcos R. Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster. Environ Mol Mutagen 2011;52:165-169. https://doi.org/10.1002/em.20604
  51. Chen C, Dubin R, Kim MC. Emerging trends and new developments in regenerative medicine: a scientometric update (2000 - 2014). Expert Opin Biol Ther 2014;14:1295-1317. https://doi.org/10.1517/14712598.2014.920813
  52. Vales G, Demir E, Kaya B, Creus A, Marcos R. Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology 2013;7:462-468. https://doi.org/10.3109/17435390.2012.689882
  53. Fragiorge EJ, Spano MA, Antunes LM. Modulatory effects of the antioxidant ascorbic acid on the direct genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster. Genet Mol Biol 2007;30:449-455. https://doi.org/10.1590/S1415-47572007000300025
  54. Bishop AJ, Schiestl RH. Role of homologous recombination in carcinogenesis. Exp Mol Pathol 2003;74:94-105. https://doi.org/10.1016/S0014-4800(03)00010-8
  55. Costa WF, Nepomuceno JC. Protective effects of a mixture of antioxidant vitamins and minerals on the genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster. Environ Mol Mutagen 2006;47:18-24. https://doi.org/10.1002/em.20160
  56. Lehmann M, Graf U, Reguly ML, Rodrigues De Andrade HH. Interference of tannic acid on the genotoxicity of mitomycin C, methylmethanesulfonate, and nitrogen mustard in somatic cells of Drosophila melanogaster. Environ Mol Mutagen 2000;36:195-200. https://doi.org/10.1002/1098-2280(2000)36:3<195::AID-EM2>3.0.CO;2-B
  57. Timeline of Mutation Research journals since 1964. Amsterdam: Elsevier, 2019. Accessed 2021 Nov 2. Available from: https://www.journals.elsevier.com/dna-repair/history-of-mutation-research/timeline-of-mutation-research-journals-since-1964.
  58. Delgado-Rodriguez A, Ortiz-Marttelo R, Graf U, Villalobos-Pietrini R, Gomez-Arroyo S. Genotoxic activity of environmentally important polycyclic aromatic hydrocarbons and their nitro derivatives in the wing spot test of Drosophila melanogaster. Mutat Res 1995;341:235-247. https://doi.org/10.1016/0165-1218(95)90095-0
  59. Graf U. Analysis of the relationship between age of larvae at mutagen treatment and frequency and size of spots in the wing somatic mutation and recombination test in Drosophila melanogaster. Experientia 1995;51:168-173. https://doi.org/10.1007/BF01929364
  60. Carmona ER, Escobar B, Vales G, Marcos R. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. Mutat Res Genet Toxicol Environ Mutagen 2015;778:12-21. https://doi.org/10.1016/j.mrgentox.2014.12.004
  61. Hajra S, Patra AR, Basu A, Bhattacharya S. Prevention of doxorubicin (DOX)-induced genotoxicity and cardiotoxicity: effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomed Pharmacother 2018;101:228-243. https://doi.org/10.1016/j.biopha.2018.02.088
  62. Pereira DG, Antunes LM, Graf U, Spano MA. Protection by Panax ginseng C.A. Meyer against the genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster. Genet Mol Biol 2008;31:947-955. https://doi.org/10.1590/S1415-47572008000500024
  63. Carmona ER, Inostroza-Blancheteau C, Obando V, Rubio L, Marcos R. Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster. Mutat Res Genet Toxicol Environ Mutagen 2015;791:1-11. https://doi.org/10.1016/j.mrgentox.2015.07.006
  64. Alaraby M, Annangi B, Marcos R, Hernandez A. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: a review. J Toxicol Environ Health B Crit Rev 2016;19:65-104. https://doi.org/10.1080/10937404.2016.1166466
  65. Liao F, Chen L, Liu Y, Zhao D, Peng W, Wang W, et al. The size-dependent genotoxic potentials of titanium dioxide nanoparticles to endothelial cells. Environ Toxicol 2019;34:1199-1207. https://doi.org/10.1002/tox.22821
  66. Martinez-Valdivieso D, Font R, Fernandez-Bedmar Z, Merinas-Amo T, Gomez P, Alonso-Moraga A, et al. Role of zucchini and its distinctive components in the modulation of degenerative processes: genotoxicity, anti-genotoxicity, cytotoxicity and apoptotic effects.Nutrients 2017;9:755. https://doi.org/10.3390/nu9070755
  67. Fernandez-Bedmar Z, Alonso-Moraga A. In vivo and in vitro evaluation for nutraceutical purposes of capsaicin, capsanthin, lutein and four pepper varieties. Food Chem Toxicol 2016;98:89-99. https://doi.org/10.1016/j.fct.2016.10.011