• Title/Summary/Keyword: cancer chemotherapy resistance

Search Result 188, Processing Time 0.026 seconds

Establishment of Paclitaxel-resistant Breast Cancer Cell Line and Nude Mice Models, and Underlying Multidrug Resistance Mechanisms in Vitro and in Vivo

  • Chen, Si-Ying;Hu, Sa-Sa;Dong, Qian;Cai, Jiang-Xia;Zhang, Wei-Peng;Sun, Jin-Yao;Wang, Tao-Tao;Xie, Jiao;He, Hai-Rong;Xing, Jian-Feng;Lu, Jun;Dong, Ya-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6135-6140
    • /
    • 2013
  • Background: Breast cancer is a common malignant tumor which affects health of women and multidrug resistance (MDR) is one of the main factors leading to failure of chemotherapy. This study was conducted to establish paclitaxel-resistant breast cancer cell line and nude mice models to explore underlying mechanisms of MDR. Methods: The breast cancer drug-sensitive cell line MCF-7 (MCF-7/S) was exposed in stepwise escalating paclitaxel (TAX) to induce a resistant cell line MCF-7/TAX. Cell sensitivity to drugs and growth curves were measured by MTT assay. Changes of cell morphology and ultrastructure were examined by optical and electron microscopy. The cell cycle distribution was determined by flow cytometry. Furthermore, expression of proteins related to breast cancer occurrence and MDR was tested by immunocytochemistry. In Vivo, nude mice were injected with MCF-7/S and MCF-7/TAX cells and weights and tumor sizes were observed after paclitaxel treatment. In addition, proteins involved breast cancer and MDR were detected by immunohistochemistry. Results: Compared to MCF-7/S, MCF-7/TAX cells had a higher resistance to paclitaxel, cross-resistance and prolonged doubling time. Moreover, MCF-7/TAX showed obvious alterations of ultrastructure. Estrogen receptor (ER) expression was low in drug resistant cells and tumors while expression of human epidermal growth factor receptor 2 (HER2) and Ki-67 was up-regulated. P-glycoprotein (P-gp), lung resistance-related protein (LRP) and glutathione-S-transferase-${\pi}$ (GST-${\pi}$) involved in the MDR phenotype of resistant cells and tumors were all overexpressed. Conclusion: The underlying MDR mechanism of breast cancer may involve increased expression of P-gp, LRP and GST-${\pi}$.

Drug Resistance Effects of Ribosomal Protein L24 Overexpression in Hepatocellular Carcinoma HepG2 Cells

  • Guo, Yong-Li;Kong, Qing-Sheng;Liu, Hong-Sheng;Tan, Wen-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9853-9857
    • /
    • 2014
  • Background: The morbidity and mortality rate of liver cancer continues to rise in China and advanced cases respond poorly to chemotherapy. Ribosomal protein L24 has been reported to be a potential therapeutic target whose depletion or acetylation inhibits polysome assembly and cell growth of cancer. Materials and Methods: Total RNA of cultured amycin-resistant and susceptible HepG2 cells was isolated, and real time quantitative RT-PCR were used to indicate differences between amycin-resistant and susceptible strains of HepG2 cells. Viability assays were used to determine amycin resistance in RPL24 transfected and control vector and null-transfected HepG2 cell lines. Results: The ribosomal protein L24 transcription level was 7.7 times higher in the drug-resistant HepG2 cells as compared to susceptible cells on quantitative RT-PCR analysis. This was associated with enhanced drug resistance as determined by methyl tritiated thymidine (3H-TdR) incorporation. Conclusions: The ribosomal protein L24 gene may have effects on drug resistance mechanisms in hepatocellular carcinoma HepG2 cells.

Alteration of DNA Methylation in Gastric Cancer with Chemotherapy

  • Choi, Su Jin;Jung, Seok Won;Huh, Sora;Chung, Yoon-Seok;Cho, Hyosun;Kang, Hyojeung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1367-1378
    • /
    • 2017
  • Epigenetic alterations such as DNA methylation, histone acetylation, and chromatin remodeling can control gene expression by regulating gene transcription. DNA methylation is one of the frequent epigenetic events that play important roles in cancer development. Cancer cells can gain significant resistance to anticancer drugs and escape programmed cell death through major epigenetic changes, including DNA methylation. To date, several research groups have identified instances of both (i) hypermethylation of tumor suppressor genes, and (ii) global hypomethylation of oncogenes. These changes in DNA methylation status could be used as biomarkers for the diagnosis and prognosis of cancer patients undergoing chemotherapies or other clinical therapies. Herein, we describe genes for which methylation is dependent upon anticancer drug resistance in patients with gastric cancer; we then suggest a significant epigenetic target to focus on for overcoming anticancer drug resistance.

Dual Drug-Loaded Liposomes for Synergistic Efficacy in MCF-7 Breast Cancer Cells and Cancer Stem Cells

  • Park, Hee-Bin;Kim, Yun-Ji;Lee, Seong-Min;Park, James S.;Kim, Keun-Sik
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.159-169
    • /
    • 2019
  • Breast cancer stem cells (BCSCs) in breast cancer cells have self-renewal ability and differentiation potential. They are also resistant to drugs after chemotherapy. To overcome this resistance, we designed negatively charged 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG)-based liposomes for drug delivery. These liposomes have enhanced the therapeutic effects of a range of antitumor therapies by increasing the cellular uptake and improving drug delivery to targets sites. In this study, we investigated whether DMPG-POPC liposomes, including the neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin (POPC), can specifically bind to MCF-7 breast cancer cells and increase cellular uptake compared with that by CHOL-POPC liposomes. We also estimated the cytotoxicity of DMPG-POPC liposomes encapsulated with both metformin (Met) and sodium salicylate (Sod) against breast cancer cells and BCSCs compared with that of the free drugs. Our results demonstrated that these dual drug-encapsulated liposomes significantly enhanced the cytotoxic and anti-colony formation abilities compared with individual drug-encapsulated liposomes or free drugs in BCSCs. Overall, our results suggest that DMPG-POPC liposomes containing two drugs (Met + Sod) show promise for synergistic anti-cancer therapy of breast cancer by increasing drug delivery efficiency into breast cancer cells and BCSCs.

Inhibition of DNA-dependent Protein Kinase by Blocking Interaction between Ku Complex and Catalytic Subunit of DNA-dependent Protein Kinase

  • Kim, Chung-Hui;Cuong, Dang-Van;Kim, Jong-Su;Kim, Na-Ri;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2003
  • Recent studies indicated that cancer cells become resistant to ionizing radiation (IR) and chemotherapy drugs by enhanced DNA repair of the lesions. Therefore, it is expected to increase the killing of cancer cells and reduce drug resistance by inhibiting DNA repair pathways that tumor cells rely on to escape chemotherapy. There are a number of key human DNA repair pathways which depend on multimeric polypeptide activities. For example, Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) on binding to double strand DNA breaks (DSBs) are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and are essential for DNA-dependent protein kinase (DNA-PK) activity. It has been known that DNA-PK is an important factor for DNA repair and also is a sensor-transmitting damage signal to downstream targets, leading to cell cycles arrest. Our ultimate goal is to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. This would greatly facilitate tumor cell cytotoxic activity and programmed cell death through DNA damaging drug treatment. Therefore, we designed a domain of Ku80 mutants that binds to Ku70 but not DNA end binding activity and used the peptide in co-therapy strategy to see whether the targeted inhibition of DNA-PK activity sensitized breast cancer cells to irradiation or chemotherapy drug. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, thus resulting in inactivation of DNA-PK activity. Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to IR or chemotherapy drugs, and the growth of breast cancer cells was inhibited. Additionally, the results obtained in the present study also support the physiological role of resistance of cancer cells to IR or chemotherapy.

Increasing Antimicrobial Resistance Monitored in Surveillance Analysis of Blood Stream Infections in Febrile Neutropenic Pediatric Oncology Patients

  • El-Mahallawy, Hadir A;Hassan, Safaa Shawky;El-Wakil, Mohamed;Moneer, Manar M;Shalaby, Lobna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5691-5695
    • /
    • 2015
  • Background: Continuous surveillance of pattern of blood stream infection is necessary in febrile neutropenia (FN)especially with the recent escalating trend in the management of pediatric cancer patients towards intensified regimens and with the increase in infections caused by resistant organisms limiting the choice of antibiotics. Aim: To monitor change in pattern of blood stream infections (BSI) in FN pediatric cancer patients. Materials and Methods: Surveillance of FN episodes with positive BSI was prospectively monitored and compared to a previous surveillance in the same pediatric oncology unit. Results: A total of 232 BSI positive episodes were documented in 192 patients during a 6 months period. The results of recent surveillance analysis showed an increase in intensified regimens of chemotherapy, antimicrobial resistance, fungal infections, and prolonged duration of episodes when compared to previous surveillance, with p value sof <0.001, 0.005, 0.021, and <0.001, respectively. There was an apparent decrease in the crude mortality but this was not statistically significant, to 6% in 2011 from 10 % in 2006. Conclusions: The pattern of BSI at our institution is still inclining towards gram positive organisms but is showing a shift towards more antibiotic resistance and fungal infections.

Overexpression of CXCR4 is significantly associated with cisplatin-based chemotherapy resistance and can be a prognostic factor in epithelial ovarian cancer

  • Li, Jia;Jiang, Kuo;Qiu, Xiuchun;Li, Meng;Hao, Qiang;Wei, Li;Zhang, Wei;Chen, BiLiang;Xin, Xiaoyan
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • The chemokine receptor 4 (CXCR4) plays an important role in the growth, angiogenesis and metastasis of various cancers, including epithelial ovarian cancer (EOC). However, the correlation between CXCR4 and the clinical response of EOC patients to chemotherapy remains unknown. 124 EOC patients were recruited to assess the relationship between CXCR4 and the response to cisplatin-based chemotherapy. The results showed that patients with a higher CXCR4 expression had a significantly lower chemosensitivity, a poorer progression-free survival and a lower overall survival than those with lower CXCR4 expression. In addition, knockdown of CXCR4 by small interfering RNA suppressed cell proliferation and resulted in G1/S arrest, increased apoptosis and chemosensitivity in both cisplatin-sensitive A2780 cells and cisplatin-resistant cell A2780/cis in vitro. Our data suggest that CXCR4 is one of the key molecules in cisplatin-based chemotherapy for EOC patients and that CXCR4 inhibition is a potential strategy to address the chemoresistance of EOC.

Meta-analysis of Seven Randomized Control Trials to Assess the Efficacy and Toxicity of Combining EGFR-TKI with Chemotherapy for Patients with Advanced NSCLC who Failed First-Line Treatment

  • Xiao, Bing-Kun;Yang, Jian-Yun;Dong, Jun-Xing;Ji, Zhao-Shuai;Si, Hai-Yan;Wang, Wei-Lan;Huang, Rong-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2915-2921
    • /
    • 2015
  • Background: Some recent clinical trials have been conducted to evaluate a combination of EGFR- TKI with chemotherapy for advanced NSCLC patients as second-line therapy, but the results on the efficacy of such trials are inconsistent. The aim of this meta-analysis was to evaluate the efficacy and safety of combination of EGFR-TKI and chemotherapy for patients with advanced NSCLC who failed first-line treatment. Materials and Methods: We searched relative trials from PubMed, EMBASE, ASCO Abstracts, ESMO Abstracts, Cochrane Library and Clinical Trials.gov. Outcomes analyzed were overall response rate (ORR), progression- free survival (PFS), overall survival (OS) and major toxicity. Results: Seven trails eventually were included in this meta-analysis, covering 1,168 patients. The results showed that the combined regimen arm had a significant higher ORR (RR 1.76 [1.16, 2.66], p=0.007) and longer PFS (HR 0.75 [0.66-0.85], p<0.00001), but failed to show effects on OS (HR 0.88 [0.68-1.15], p=0.36). In terms of subgroup results, continuation of EGFR-TKI in addition to chemotherapy after first-line EGFR-TKI resistance confered no improvement in ORR (RR 0.95 [0.68, 1.33], p=0.75) and PFS (HR 0.89[0.69, 1.15], p=0.38), and OS was even shorter (HR1.52 [1.05-2.21], p=0.03). However, combination therapy with EGFR-TKI and chemotherapy after failure of first-line chemotherapy significantly improved the ORR (RR 2.06 [1.42, 2.99], p=0.0002), PFS (HR 0.71 [0.61, 0.82], p<0.00001) and OS (HR 0.74 [0.62-0.88], p=0.0008), clinical benefit being restricted to combining EGFR-TKI with pemetrexed, but not docetaxel. Grade 3-4 toxicity was found at significantly higher incidence in the combined regimen arm. Conclusions: Continuation of EGFR-TKI in addition to chemotherapy after first-line EGFR-TKI resistance should be avoided. Combination therapy of EGFR-TKI and pemetrexed for advanced NSCLC should be further investigated for prognostic and predictive factors to find the group with the highest benefit of the combination strategy.

Enhancing Activity of Anticancer Drugs in Multidrug Resistant Tumors by Modulating P-Glycoprotein through Dietary Nutraceuticals

  • Khan, Muhammad;Maryam, Amara;Mehmood, Tahir;Zhang, Yaofang;Ma, Tonghui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6831-6839
    • /
    • 2015
  • Multidrug resistance is a principal mechanism by which tumors become resistant to structurally and functionally unrelated anticancer drugs. Resistance to chemotherapy has been correlated with overexpression of p-glycoprotein (p-gp), a member of the ATP-binding cassette (ABC) superfamily of membrane transporters. P-gp mediates resistance to a broad-spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively expelling the drugs from cells. Use of specific inhibitors/blocker of p-gp in combination with clinically important anticancer drugs has emerged as a new paradigm for overcoming multidrug resistance. The aim of this paper is to review p-gp regulation by dietary nutraceuticals and to correlate this dietary nutraceutical induced-modulation of p-gp with activity of anticancer drugs.

Involvement of NRF2 Signaling in Doxorubicin Resistance of Cancer Stem Cell-Enriched Colonospheres

  • Ryoo, In-geun;Kim, Geon;Choi, Bo-hyun;Lee, Sang-hwan;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.482-488
    • /
    • 2016
  • Cancer stem cells (CSCs) are a subset of tumor cells, which are characterized by resistance against chemotherapy and environmental stress, and are known to cause tumor relapse after therapy. A number of molecular mechanisms underlie the chemoresistance of CSCs, including high expression levels of drug efflux transporters. We investigated the role of the antioxidant transcription factor NF-E2-related factor 2 (NRF2) in chemoresistance development, using a CSC-enriched colonosphere system. HCT116 colonospheres were more resistant to doxorubicin-induced cell death and expressed higher levels of drug efflux transporters such as P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) compared to HCT116 monolayers. Notably, levels of NRF2 and expression of its target genes were substantially elevated in colonospheres, and these increases were linked to doxorubicin resistance. When NRF2 expression was silenced in colonospheres, Pgp and BCRP expression was downregulated, and doxorubicin resistance was diminished. Collectively, these results indicate that NRF2 activation contributes to chemoresistance acquisition in CSC-enriched colonospheres through the upregulation of drug efflux transporters.