• 제목/요약/키워드: can materials

검색결과 20,788건 처리시간 0.044초

인공위성 재질별 반사율 및 분광유형 측정 (MEASUREMENTS OF ALBEDO AND SPECTRAL PATTERNS OF MAN-MADE SATELLITE MATERIALS)

  • 이동규;김상준;이준호;한원용;민상웅
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권4호
    • /
    • pp.319-326
    • /
    • 2002
  • 인공위성의 본체 및 탑재체 제작에 사용되고 있는 구성품 재질 12점을 수집하여 가시광 영역에서 지상 분광실험을 수행한 결과 위성체 구성품 재질별로 분광반사율과 분광유형이 뚜렷이 차이를 보였고 위성체의 재질별 분류 및 식별이 가능하였다. 인공위성 재질의 지상 분광실험 결과는 운용초기에 있는 인공위성이나 우주잔해물을 실제로 분광관측하여 얻은 자료와 비교함으로써 대상물의 재질유형 및 재질구성비, 그리고 크기와 중량을 예측하는데 활용될 수 있을 것이다.

$Se_1Sb_2Te_2$ 칼코게나이드 박막의 두께에 따른 상변화 특성 연구 (The Study on Characteristic of Phase Transition in differential Chalcogenide Thin Films)

  • 이재민;양성준;신경;정홍배;김영해
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.340-343
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can controlled by electric pulses or pulsed laser hem: hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. This letters researched into the characteristic of phase change transition in differential Chalcogenide thin films materials. The electrode used Al and experimented on 100nm, 300nm, 500nm respectively.

  • PDF

칼코게나이드 3원계 박막에서의 전기적 특성에 관한 연구 (Electrical characteristic of differential ternary chalcogenide thin films)

  • 양성준;신경;이재민;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.377-380
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can controlled by electric pulses or pulsed laser beam; hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. GeSbTe(GST), AsSbTe(AST), SeSbTe(SST) used to phase change materials by appling electrical pulses. Thickness of ternary chalcogenide thin films have about 100nm. Upper and lower electrode were made of Al. It is compared with I-V characteristics after impress the variable pulses.

  • PDF

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac;Thuyet, Nguyen Minh;Kim, Jin-Chun
    • 한국분말재료학회지
    • /
    • 제27권6호
    • /
    • pp.449-457
    • /
    • 2020
  • Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

어성초 추출물을 이용한 면과 견직물의 항미생물성 염색 (Antimicrobial Dyeing of Cotton and Silk Fabrics Using Houttuynia cordata Extract)

  • 김성진;김병진;김은지;정희선;장진호
    • 한국염색가공학회지
    • /
    • 제27권3호
    • /
    • pp.194-201
    • /
    • 2015
  • Cotton and silk fabrics were dyed with Houttuynia cordata extract using aqueous ethanol solution and the dyeing and post-treatment conditions were optimized to impart antimicrobial activity to the fabrics. The dried Houttuynia cordata can be extracted at $80^{\circ}C$ for 3 hours using an aqueous ethanol solution containing 70%(w/w) ethanol. For the highest color yields. Both cotton and silk fabrics can be dyed at $100^{\circ}C$ for 60min with 10g/L of NaCl under pH 4. Silk fabrics can be dyed to higher K/S than cotton fabrics. The color fastness properties of the dyed fabrics were good when either citric acid crosslinking or aluminum alum mordanting was carried out as a post treatment. The dyed silk and cotton fabrics with the post treatments showed excellent antimicrobial activity against both Staphylococcus aureus and Klebsiella pneumoniae.

Enhanced mechanical properties and interface structure characterization of W-La2O3 alloy designed by an innovative combustion-based approach

  • Chen, Pengqi;Xu, Xian;Wei, Bangzheng;Chen, Jiayu;Qin, Yongqiang;Cheng, Jigui
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1593-1601
    • /
    • 2021
  • Oxide dispersion strengthening (ODS) tungsten alloys are highly desirable in irradiation applications. However, how to improve the properties of ODS-tungsten alloys efficiently has been worth studying for a long time. Here we report a nanostructuring approach that achieves W-La2O3 alloy with a high level of flexural strength and Vickers hardness at room temperature, which have the maximum value of 581 MPa and 703 Hv, respectively. This method named solution combustion synthesis (SCS) can generate 30 nm coating structures W-La2O3 composite powders by using Keggin-type structural polyoxometalates as raw materials in a fast and low-cost process. The composite powder can be fabricated to W-La2O3 alloy with an optimal microstructure of submicrometric W grains coexisting with nanometric oxide particles in the grain interior, and a stability interface structure of grain boundaries (GBs) by forming transition zones. The method can be used to prepare new ODS alloys with excellent properties in the future.

검사체적 방법을 이용한 평직의 투과율 계수 예측 (Permeability prediction of plain woven fabric by using control volume finite element method)

  • Y. S. Song;J. R. Youn
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.181-183
    • /
    • 2002
  • The accurate permeability for preform is critical to model and design the impregnation of fluid resin in the composite manufacturing process. In this study, the in-plane and transverse permeability for a woven fabric are predicted numerically through the coupled flow model which combines microscopic with macroscopic flow. The microscopic and macroscopic flow which are flows within the micro-unit and macro-unit cell, respectively, are calculated by using 3-D CVFEM(control volume finite element method). To avoid checker-board pressure field and improve the efficiency on numerical computation, A new interpolation function for velocity is proposed on the basis of analytic solutions. The permeability of plain woven fabric is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Based on the good agreement of the results, the relationships between the permeability and the structures of preform such as the fiber volume fraction and stacking effect can be understood. The reverse and the simple stacking are taken in account. Unlike past literatures, this study is based on more realistic unit cell and the improved prediction of permeability can be achieved. It is observed that in-plane flow is more dominant than transverse flow in the real flow through preform and the stacking effect of multi-layered preform is negligible. Consequently, the proposed coupled flow model can be applied to modeling of real composite materials processing.

  • PDF

대학생의 우주 교육을 위한 라즈베리 파이 기반 캔위성 수업자료 개발과 적용 (Development of CanSat Instruction Materials using Raspberry Pi for Space Education in University and Its Application)

  • 유승훈;이상현;이상구;이영건
    • 공학교육연구
    • /
    • 제26권1호
    • /
    • pp.3-11
    • /
    • 2023
  • The purpose of this study is to develop Raspberry Pi-based CanSat instruction materials for liberal arts classes to be used in university space education. The educational satellite simulation program is developed by applying the ADDIE program consisting of analysis, design, development, execution, and evaluation of 15 lessons per semester. The usefulness of the instruction materials is evaluated by a validity test of a total of 6 experts. The proposed materials are applied to 100 college students from various majors. To analyze the impact on creative problem-solving ability, a questionnaire is conducted before and after class, and as a result, it is confirmed that there is a significant improvement in all areas after class. The class satisfaction survey is conducted for a total of 10 questions, and the average score is 4.41 out of 5, which is high. In conclusion, the proposed instruction materials make it possible to achieve successful space education using Raspberry Pi and improve creative problem-solving ability in universities.

의료기기의 발전을 위한 탄소소재의 활용 (Application of Carbon Materials for the Development of Medical Devices)

  • 곽영곤
    • 핵의학기술
    • /
    • 제27권1호
    • /
    • pp.23-28
    • /
    • 2023
  • Carbon materials are widely used in many areas of our lives. A fiber having a carbon content of 90% or more obtained by heating an organic fiber precursor is referred to as a "carbon fiber". Carbon fibers are currently used in the medical market to manufacture radiation transmission device parts, artificial joints, and medical aids, as many developments have been made to utilize carbon fibers' characteristics such as light weight, radiation permeability, biocompatibility, high strength, high heat resistance, thermal conductivity, and electrical conductivity. In order to maintain body temperature and increase immunity in long-lasting nuclear medical examination and treatment through the idea of convergence of carbon materials and radiation technology, the quality of medical services can be improved by utilizing carbon materials. We should be aware of the domestic carbon-based medical device industry and make efforts to contribute to the development of medical devices. As a radiation expert, we should try to use our skills and experience to find items that can be fused with medical devices to develop various nuclear medical examination fields and radiographic examination fields that can be widely applied. We should actively engage in future technology development and carbon material research to strengthen the global competitiveness of the domestic medical device industry and improve the quality of medical services.

  • PDF

Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications

  • Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.89-104
    • /
    • 2014
  • Materials with appropriate surface roughness and low surface energy can form superhydrophobic surfaces, displaying water contact angles greater than $150^{\circ}$. Superhydrophobic carbon-based materials are particularly interesting due to their exceptional physicochemical properties. This review discusses the various techniques used to produce superhydrophobic carbon-based materials such as carbon fibers, carbon nanotubes, graphene, amorphous carbons, etc. Recent advances in emerging fields such as energy, environmental remediation, and thermal management in relation to these materials are also discussed.