• Title/Summary/Keyword: camera modelling

Search Result 38, Processing Time 0.029 seconds

A Study on Design of Visual Sensor Using Scanning Beam for Shape Recognition of Weld Joint. (용접접합부의 형상계측을 위한 주사형 시각센서의 설계에 관한 연구)

  • 배강열
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2003
  • A visual sensor consisted of polygonal mirror, laser, and CCD camera was proposed to measure the distance to the weld joint for recognizing the joint shape. To scan the laser beam of the sensor onto an object, 8-facet polygonal mirror was used as the rotating mirror. By locating the laser and the camera at axi-symmetrical positions around the mirror, the synchronized-scan condition could be satisfied even when the mirror was set to rotate through one direction continuously, which could remove the inertia effect of the conventional oscillating-mirror methods. The mathematical modelling of the proposed sensor with the optical triangulation method made it possible to derive the relation between the position of an image on the camera and the one of a laser light on the object. Through the geometrical simulation of the proposed sensor with the principal of reflection and virtual image, the optical path of a laser light could be predicted. The position and direction of the CCD camera were determined based on the Scheimpflug's condition to fit the focus of any image reflected from an object within the field of view. The results of modelling and simulation revealed that the proposed visual sensor could be used to recognize the weld joint and its vicinity located within the range of the field of view and the resolution. (Received February 19, 2003)

An Edge Sensitive Image Interpolation (에지 센서티브 이미지 보간)

  • Park, Se-Hee;Kim, Yong-Ha;Lee, Sang-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.294-298
    • /
    • 2009
  • In this study, we proposes the method to improve the quality of the image through the edge extraction more delicately. Our method is named ESII(Edge Sensitive Image Interpolation) and doesn't use the fixed parameter of the interpolation kernel. However, it changes the parameter of pixel which is interpolated to the high definition image using the proper information from the surrounding pixels. It reconstructs the image by using the LSE(Least Square Error) and determining the pixel values to make the CME(Camera Modelling Error) minimized. Compared to the conventional methods, suggested method shows the higher quality of subjective and objective image definition and lessons the computational complexity by separating the image into 1-D data.

Geometric Modelling and Coordinate Transformation of Satellite-Based Linear Pushbroom-Type CCD Camera Images (선형 CCD카메라 영상의 기하학적 모델 수립 및 좌표 변환)

  • 신동석;이영란
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.85-98
    • /
    • 1997
  • A geometric model of pushbroom-type linear CCD camera images is proposed in this paper. At present, this type of cameras are used for obtaining almost all kinds of high-resolution optical images from satellites. The proposed geometric model includes not only a forward transformation which is much more efficient. An inverse transformation function cannot be derived analytically in a closed form because the focal point of an image varies with time. In this paper, therefore, an iterative algorithm in which a focal point os converged to a given pixel position is proposed. Although the proposed model can be applied to any pushbroom-type linear CCD camera images, the geometric model of the high-resolution multi-spectral camera on-board KITSAT-3 is used in this paper as an example. The flight model of KITSAT-3 is in development currently and it is due to be launched late 1998.

Camera Modelling of Linear Pushbroom Images - Quality analysis of various algorithms (대표적 위성영상 카메라 모델링 알고리즘들의 비교연구)

  • 김태정;김승범;신동석
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.73-86
    • /
    • 2000
  • Commonly-used methods for camera modelling of pushbroom images were implemented and their performances were assessed. The models include Vector Propagation) model, Gugan and Downman(GD)'s model, Orun and Natarajan(ON)'s model, and Direct Linear Transformation(DLT) model The models were tested on a SPOT full-scene over Seoul. The number of ground control points(GCP) used range from 1 to 23. For less than 6 GCPs all other models fail except VP, with VP's accuracy being 2.7 pixels. With mode than 6 GCPs ON shows the best accuracy with 1pixel accuracy while the accuracy of VP is 1.5 pixels. GD fails in most cases due to the correlation among model parameters. The accuracy of DLT does not converge but fluctuates between 1 and 4 pixels subject to GCPs used. VP has an advantage in that its results can be used for the estimation of satellite orbit. Unresolved topics are: to remove errors in GCPs from the aforementioned accuracy value; to improve the performance of VP.

Performance analysis on the geometric correction algorithms using GCPs - polynomial warping and full camera modelling algorithm

  • Shin, Dong-Seok;Lee, Young-Ran
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.252-256
    • /
    • 1998
  • Accurate mapping of satellite images is one of the most important Parts in many remote sensing applications. Since the position and the attitude of a satellite during image acquisition cannot be determined accurately enough, it is normal to have several hundred meters' ground-mapping errors in the systematically corrected images. The users which require a pixel-level or a sub-pixel level mapping accuracy for high-resolution satellite images must use a number of Ground Control Points (GCPs). In this paper, the performance of two geometric correction algorithms is tested and compared. One is the polynomial warping algorithm which is simple and popular enough to be implemented in most of the commercial satellite image processing software. The other is full camera modelling algorithm using Physical orbit-sensor-Earth geometry which is used in satellite image data receiving, pre-processing and distribution stations. Several criteria were considered for the performance analysis : ultimate correction accuracy, GCP representatibility, number of GCPs required, convergence speed, sensitiveness to inaccurate GCPs, usefulness of the correction results. This paper focuses on the usefulness of the precision correction algorithm for regular image pre-processing operations. This means that not only final correction accuracy but also the number of GCPs and their spatial distribution required for an image correction are important factors. Both correction algorithms were implemented and will be used for the precision correction of KITSAT-3 images.

  • PDF

A Geographic Modeling System Using GIS and Real Images (GIS와 실영상을 이용한 지리 모델링 시스템)

  • 안현식
    • Spatial Information Research
    • /
    • v.12 no.2
    • /
    • pp.137-149
    • /
    • 2004
  • For 3D modelling artificial objects with computers, we have to draw frames and paint the facet images on each side. In this paper, a geographic modelling system building automatically 3D geographic spaces using GIS data and real images of buildings is proposed. First, the 3D model of terrain is constructed by using TIN and DEM algorithms. The images of buildings are acquired with a camera and its position is estimated using vertical lines of the image and the GIS data. The height of the building is computed with the image and the position of the camera, which used for making up the frames of buildings. The 3D model of the building is obtained by detecting the facet iamges of the building and texture mapping them on the 3D frame. The proposed geographical modeling system is applied to real area and shows its effectiveness.

  • PDF

Learning the nonlinearity of a camera calibration model using GMDH algorithm (GMDH 알고리즘에 의한 카메라 보정 모델의 비선형성 학습)

  • Kim, Myoung-Hwan;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.109-115
    • /
    • 2005
  • Calibration is a prerequisite procedure for employing a camera as a 3D sensor in an automated machines like robots. As accurate sensing is possible only when the vision sensor is calibrated accurately, many different approaches and models have been proposed for increasing calibration accuracy. Particularly an important factor which greatly affects the calibration accuracy is the nonlinearity in the mapping between 3D world and corresponding 2D image. In this paper GMDH algorithm is used to learn the nonlinearity without physical modelling. The technique proposed can be effective in various situations where the levels of noises and characteristics of nonlinear distortion are different. In simulations and an experiment, the proposed technique showed good and reliable results.

Vision Inspection for Flexible Lens Assembly of Camera Phone (카메라 폰 렌즈 조립을 위한 비전 검사 방법들에 대한 연구)

  • Lee I.S.;Kim J.O.;Kang H.S.;Cho Y.J.;Lee G.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.631-632
    • /
    • 2006
  • The assembly of camera lens modules fur the mobile phone has not been automated so far. They are still assembled manually because of high precision of all parts and hard-to-recognize lens by vision camera. In addition, the very short life cycle of the camera phone lens requires flexible and intelligent automation. This study proposes a fast and accurate identification system of the parts by distributing the camera for 4 degree of freedom assembly robot system. Single or multi-cameras can be installed according to the part's image capture and processing mode. It has an agile structure which enables adaptation with the minimal job change. The framework is proposed and the experimental result is shown to prove the effectiveness.

  • PDF

3D Feature Based Tracking using SVM

  • Kim, Se-Hoon;Choi, Seung-Joon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1458-1463
    • /
    • 2004
  • Tracking is one of the most important pre-required task for many application such as human-computer interaction through gesture and face recognition, motion analysis, visual servoing, augment reality, industrial assembly and robot obstacle avoidance. Recently, 3D information of object is required in realtime for many aforementioned applications. 3D tracking is difficult problem to solve because during the image formation process of the camera, explicit 3D information about objects in the scene is lost. Recently, many vision system use stereo camera especially for 3D tracking. The 3D feature based tracking(3DFBT) which is on of the 3D tracking system using stereo vision have many advantage compare to other tracking methods. If we assumed the correspondence problem which is one of the subproblem of 3DFBT is solved, the accuracy of tracking depends on the accuracy of camera calibration. However, The existing calibration method based on accurate camera model so that modelling error and weakness to lens distortion are embedded. Therefore, this thesis proposes 3D feature based tracking method using SVM which is used to solve reconstruction problem.

  • PDF

The Effects of Roll Misalignment Errors, Shooting Distance, and Vergence Condition of 3D Camera on 3D Visual Fatigue (시각피로 모형: 카메라의 회전오차, 촬영 거리, 수렴 조건이 입체 시각피로에 미치는 영향)

  • Li, Hyung-Chul O.;Park, JongJin;Kim, ShinWoo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.589-598
    • /
    • 2013
  • In order to understand 3D visual fatigue, it is necessary to examine the visual fatigue induced by camera parameters as well as that induced by a pre-existing 3D content. In the present study, we examined the effects of camera parameters, such as roll misalignment error, shooting distance and vergence condition on 3D visual fatigue and we modelled it. The results indicate that roll misalignment error, shooting distance and vergence condition affect 3D visual fatigue and the effect of roll misalignment error on 3D visual fatigue is evident specifically when screen disparity is relatively small.