• 제목/요약/키워드: camera distortion

검색결과 322건 처리시간 0.024초

PRACTICAL WAYS TO CALCULATE CAMERA LENS DISTORTION FOR REAL-TIME CAMERA CALIBRATION

  • Park, Seong-Woo;Hong, Ki-Sang
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1999년도 KOBA 방송기술 워크샵 KOBA Broadcasting Technology Workshop
    • /
    • pp.125-131
    • /
    • 1999
  • In this paper, we address practical methods for calculating camera lens distortion for real time applications. Although the lens distortion problem can be easily ignored for constant-parameter lenses, in the field of real-time camera calibrations, for zoom lenses a large number of calculations are needed to calculate the distortion. However, if the distortion can be calculated independently of the other camera parameter, we can easily calibrate a camera without the need for a large number of calculations. Based on Tsai's camera model, we propose two different methods for calculating lens distortion. These methods are so simple and require so few calculations that the lens distortion can be rapidly calculated even in real-time applications. The first method is to refer to the focal length - lens distortion Look Up Table(LUT), which is constructed in the initialization process. The second method is to use the relationship between the feature points found in the image. Experiments were carried out for both methods, results of which show that the proposed methods are favorably comparable in performance with non-real full optimization method.

Distortion Correction Modeling Method for Zoom Lens Cameras with Bundle Adjustment

  • Fang, Wei;Zheng, Lianyu
    • Journal of the Optical Society of Korea
    • /
    • 제20권1호
    • /
    • pp.140-149
    • /
    • 2016
  • For visual measurement under dynamic scenarios, a zoom lens camera is more flexible than a fixed one. However, the challenges of distortion prediction within the whole focal range limit the widespread application of zoom lens cameras greatly. Thus, a novel sequential distortion correction method for a zoom lens camera is proposed in this study. In this paper, a distortion assessment method without coupling effect is depicted by an elaborated chessboard pattern. Then, the appropriate distortion correction model for a zoom lens camera is derived from the comparisons of some existing models and methods. To gain a rectified image at any zoom settings, a global distortion correction modeling method is developed with bundle adjustment. Based on some selected zoom settings, the optimized quadratic functions of distortion parameters are obtained from the global perspective. Using the proposed method, we can rectify all images from the calibrated zoom lens camera. Experimental results of different zoom lens cameras validate the feasibility and effectiveness of the proposed method.

기하학적 왜곡을 고려한 카메라 모델링 및 보정기법 개발 (Development of camera modeling and calibration technique with geometric distortion)

  • 한성현;이만형;장영희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1836-1839
    • /
    • 1997
  • This paper presents machine vision technique with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. Radial distortion causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is, the optical centers of lens elements are not strictly collinear. It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing.

  • PDF

A Study on Machine Vision System and Camera Modeling with Geometric Distortion

  • 왕한흥;한성현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.179-185
    • /
    • 1997
  • This paper presents machine vision technique with a camera modeling that accounts for major sources of camera distortion, namely,radial, decentering, and thin prism distortion. Radial distortion causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to varios degrees of decentering,that is,the optical centers of lens elements are not strictly collinear. Thin prism distortion arises form imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of and to apply the line of part manufacturing.

깊이 정보를 이용한 원근 왜곡 영상의 보정 (Correction of Perspective Distortion Image Using Depth Information)

  • 권순각;이동석
    • 한국멀티미디어학회논문지
    • /
    • 제18권2호
    • /
    • pp.106-112
    • /
    • 2015
  • In this paper, we propose a method for correction of perspective distortion on a taken image. An image taken by a camera is caused perspective distortion depending on the direction of the camera when objects are projected onto the image. The proposed method in this paper is to obtain the normal vector of the plane through the depth information using a depth camera and calculate the direction of the camera based on this normal vector. Then the method corrects the perspective distortion to the view taken from the front side by performing a rotation transformation on the image according to the direction of the camera. Through the proposed method, it is possible to increase the processing speed than the conventional method such as correction of perspective distortion based on color information.

뉴럴네트워크를 이용한 카메라 보정기법 개발 (Development of Camera Calibration Technique Using Neural-Network)

  • 장영희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.225-229
    • /
    • 1997
  • This paper describes the camera calibration based-neural network with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. Radial distortion causes and inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is, the optical centers of lens elements are not strictly collinear. Thin prism distortion arises from imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing. The performance of proposed camera calibration is illustrated by simulation and experiment.

  • PDF

카메라기반의 왜곡이 보정된 흑백 문서 영상 생성 (Distortion Corrected Black and White Document Image Generation Based on Camera)

  • 김진호
    • 한국콘텐츠학회논문지
    • /
    • 제15권11호
    • /
    • pp.18-26
    • /
    • 2015
  • 스캐너 대신 카메라를 이용하여 문서의 사본 영상을 촬영하면 촬영 각도에 따라 기하학적 왜곡이 발생하거나 그림자가 생길 수 있다. 본 논문에서는 카메라로 촬영한 문서 영상으로부터 왜곡을 보정하고 그림자 영향을 제거한 흑백 문서 영상 생성 알고리즘을 제안하였다. 카메라 렌즈의 방사 왜곡으로 인해 휘어진 테두리를 펴거나 촬영 각도에 따라 유입된 문서 외부 영역을 제거하기 위한 기하학적 보정을 위해 2차 미분 필터 기반의 문서 테두리 검출 방안을 마련하였다. 그리고 적응적 이진화 방법으로 그림자를 제거한 흑백 문서 영상을 생성하였다. 제안한 왜곡 보정 흑백 문서 영상 생성 알고리즘을 스마트 폰 카메라로 촬영한 문서 영상들을 대상으로 실험한 결과 우수한 처리 결과를 얻을 수 있었다.

Feasibility of Using an Automatic Lens Distortion Correction (ALDC) Camera in a Photogrammetric UAV System

  • Jeong, Hohyun;Ahn, Hoyong;Park, Jinwoo;Kim, Hyungwoo;Kim, Sangseok;Lee, Yangwon;Choi, Chuluong
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.475-483
    • /
    • 2015
  • This study examined the feasibility of using an automatic lens distortion correction (ALDC) camera as the payload for a photogrammetric unmanned aerial vehicle (UAV) system. First, lens distortion for the interior orientation (IO) parameters was estimated. Although previous studies have largely ignored decentering distortion, this study revealed that more than 50% of the distortion of the ALDC camera was caused by decentering distortion. Second, we compared the accuracy of bundle adjustment for camera calibration using three image types: raw imagery without the ALDC option; imagery corrected using lens profiles; and imagery with the ALDC option. The results of image triangulation, the digital terrain model (DTM), and the orthoimage using the IO parameters for the ALDC camera were similar to or slightly better than the results using self-calibration. These results confirm that the ALDC camera can be used in a photogrammetric UAV system using only self-calibration.

신경망을 이용한 렌즈의 왜곡모델 구성 및 카메라 보정 (Camera Calibration And Lens of Distortion Model Constitution for Using Artificial Neural Networks)

  • 김민석;남창우;우동민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2923-2925
    • /
    • 1999
  • The objective of camera calibration is to determine the internal optical characteristics of camera and 3D position and orientation of camera with respect to the real world. Calibration procedure applicable to general purpose cameras and lenses. The general method to revise the accuracy rate of calibration is using mathematical distortion of lens. The effective og calibration show big difference in proportion to distortion of camera lens. In this paper, we propose the method which calibration distortion model by using neural network. The neural network model implicity contains all the distortion model. We can predict the high accuracy of calibration method proposed in this paper. Neural network can set properly the distortion model which has difficulty to estimate exactly in general method. The performance of the proposed neural network approach is compared with the well-known Tsai's two stage method in terms of calibration errors. The results show that the proposed approach gives much more stable and acceptabke calibration error over Tsai's two stage method regardless of camera resolution and camera angle.

  • PDF

주변부 상의 왜곡을 보정한 모바일 광각 카메라의 광학적 설계 (The Design of Wide Angle Mobile Camera Corrected Optical Distortion for Peripheral Area)

  • 김세진;정혜정;임현선
    • 한국안광학회지
    • /
    • 제18권4호
    • /
    • pp.503-507
    • /
    • 2013
  • 목적: 4매의 비구면 렌즈를 사용하여 optical distortion과 TV distortion을 감소시켜 주변부 상의 왜곡을 줄인 광각의 모바일 카메라를 설계하였다. 방법: 광학적 설계는 화각 $95^{\circ}$에서 ${\pm}1%$내의 optical distortion을 만족하도록 하였으며, 광학계 전체길이는 모바일 카메라의 두께를 고려하여 4.5 mm 이내로 하였다. 센서는 1/3.2"의 5M급 CCD를 사용하였으며 MTF는 140 lp/mm에서 20% 이상을 만족하도록 설계 조건을 설정하였다. 결과: 최적화 설계된 모바일 광각 카메라는 화각 $95^{\circ}$의 full field에서 optical distortion은 모든 field에서 ${\pm}1%$내의 결과를 보였으며 TV distortion도 0.46%로 주변부 상의 왜곡이 감소되었다. MTF 성능은 모든 field에서 20%이상으로 나타났다. 광선수차와 비점수차 모두 적은 양으로 안정된 성능을 보였다. 결론: 기존의 모바일 카메라의 화각보다 더 큰 화각을 갖는 광각의 모바일 카메라의 distortion을 광학적으로 개선하여 주변부의 상의 왜곡을 감소시켜 보다 쾌적한 넓은 시야를 얻을 수 있었으며 소프트웨어로 보정할 때 발생하는 단점을 보완할 수 있었다. 이는 안경과 접목되는 카메라의 연구에 활용될 수 있으리라 사료된다.