• Title/Summary/Keyword: cam profiles

Search Result 28, Processing Time 0.018 seconds

A Study on Design and Machining of the Mirror Type of Conjugate Cam (미러 타입 컨쥬게이트 캠의 설계와 가공에 관한 연구)

  • Cho Hyun Deog;Kim Yoo Jong;Yong Boo Joong;Dong Yu ge
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.83-90
    • /
    • 2005
  • A mirror cam mechanism a kind of conjugate cam mechanism consists of two cams, two rollers, and two links. Since profiles of two mirror cam are identical, a simultaneous machining of two cams is achievable. Some machining errors on cam profiles do not result in the internal acting force, which often causes problems in high speed cam mechanism between two links. Also, since angular accelerations of two links are same, the internal acting force by the difference of the angular accelerations does not occur in the mechanism. Thus the mirror cam mechanism is very useful in high speed machinery. This paper studies a design method as well as a machining method, and develops an exclusive CAD/CAM software for mirror cam profiles. The developed CAD/CAM software is applied to a typical mirror cam mechanism and a mock-up equipment is built in order to test the machinism mirror cm. Experimental investigations show that the contact between cam surface and roller surface according to cam rotation agrees well with the simulation on the developed CAD/CAM software.

A Study on the Optimal Design of Automotive Cam Profiles using Hermite Curve (Hermite 곡선을 이용한 자동차 엔진 캠 형상의 최적 설계에 관한 연구)

  • 김도중;김원현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.129-140
    • /
    • 1998
  • A numerical method is proposed to optimize automotive cam profiles. An acceleration curve of a cam follower motion is described by Hermite spline curves. Because of the intrinsic characteristics of the Hermite curve, it is possible to design an acceleration curve with arbitrary shape. Design variables in the optimization problem are location of control points which define the acceleration curve. Objective function includes dynamic performances as well as kinematic properties of a valve train. Similar optimization procedure was also performed using Polydyne cam profile synthesis method. Optimized profiles using the Hermite curve are proved to be superior to those using the Polydyne method.

  • PDF

A Multi-Polynomial Synthesis Method for DRRD Cam Profile Optimizations and Effects of Shape Factors on the Cam Lobe Area (DRRD 캠 형상 최적 설계를 위한 다항식 합성법과 캠 로우브 면적에 미치는 형상 계수들의 영향)

  • 김도중;박성태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.59-71
    • /
    • 1994
  • A multi-polynomial method is proposed to synthesize DRRD cam profiles. A cam lift duration s divided into 10 sections, each of them is expressed by a polynomial equation. 12 design variables are extracted from the cam profile displacement, velocity, and acceleration curves. Because all the design variables have physical meanings which are familiar to most cam designers, it is easy to imagine a profile shape from the design variables. The design envelope of the method is wide enough to be used in DRRD automotive cam designs. Polydyne cams, widely used in automotive engines, are included into the envelope. Unlike Polydyne cams, the method provides capability of wide velocity factor variations, which gives much flexibility in flat-faced tappet design. Area factor of profiles designed by the method can be increased 5-10% compared to those of Polydyne cams without increasing acceleration factor. The method is especially useful for cam profile optimizations.

  • PDF

Cam Profile Design for Impulsive Noise Reduction of Automotive Engine Valve Train (자동차 엔진 밸브트레인의 타음감소를 위한 캠 형상 설계)

  • An, Ki-Yong;Kim, Do-Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.139-148
    • /
    • 2006
  • Valve train is one of the important noise sources in idling engines. Valve train noise comes mostly from two different impacts. One is the impact between cam and tappet at the beginning of the valve open period, which is an important source of impulsive noise of valve trains. The other is the impact between valve and valve seat at the closing of the valve open period. In case of mechanical lash adjusters, it is very difficult to control the initial impact. In this paper, we designed various types of cam profiles, especially in the opening ramp design, and investigated the effect of cam profiles on the magnitude of the initial impact. The effects that some cam design parameters have on the impulsive noise are also observed.

CAD/CAM/CAT Turmaround System for Precision Machining (정밀가공을 위한 CAD/CAM/CAT 일괄처리시스템)

  • 안중용;김승철;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.417-422
    • /
    • 1993
  • In order to minimize turnaround of machining in FMS lines, CAD/CAM/CAT integrated system called MascCAM was developed. Developing enhanced CAM and inspection modules in the MascCAM environment, 2D came, 2 $^{1}$2/ D prismatic parts and 3D free-formed surfaces were able to be automatically designed, manufactured and inspected on the machine tools by using AutoCAM and Z-map. Introducing Z-map technique, the MascCAM was able to be interfaceed with and CAD system. Developed QPPGT module generates a quick and fool-proof inspection work to users. A vertical and a horizontal machining center equipped with FANUC OMC were used for experiments. Performance of the system was confirmed by a large amount of experiments.

  • PDF

A Study on Acting Forces on the Vane of Vane Pump used for Vehicles′ Hydraulic Power Steering (차량용 HPS 베인펌프의 베인의 작용력에 관한 연구)

  • 정석훈;오석형
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.163-167
    • /
    • 2004
  • Reducing friction torque of the oil hydraulic vane pump used as the power source of power steering system should consider friction torque including viscous and mechanical friction torque according to the changes of rpm and pressure. This paper analyzes the forces acting on the vane to reduce the friction torque of the vane of the hydraulic vane pump used for Hydraulic Power Steering(HPS) system, and futhermore, the forces according to the shapes of cam profiles are analyzed.

A Study on the Cam Profile Synthesis Method for Automotive Engines Using Hermite Curve (Hermite 곡선을 이용한 자동차 엔진 캠 형상 합성법에 관한 연구)

  • Kim, D.J.;Lee, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.90-99
    • /
    • 1995
  • A numerical method is proposed to synthesize automotive cam profiles. An arbitrary acceleration profile for the cam follower motion is divided into several segments, each of them is described by a Hermite curve. A cam profile is defined by control point locations and control variables assigned to each segment. Closed form equations are derived for velocity and displacement constraints which should be satisfied for the curve to be a cam profile. Because the method is flexible and provide arbitrary local controllability, any types of cam acceleration profile can be reproduced by the method. The method is expecially useful for the design of roller type OHC valve trains which need precise local control in the cam profile design to avoid under-cutting problems.

  • PDF

A Study on Design and Machining of Conjugate Cam on the Basis of Master Cam (마스트 캠에 의한 컨쥬게이트 캠의 설계 및 가공에 관한 연구)

  • Cho, Hyun Deog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.52-59
    • /
    • 2003
  • Cam mechanism is a machine part frequently used in machinery. Specially, conjugate cam mechanism is very suitable for the high speed working and the heavy power translation. Then a conjugate cam mechanism need high precision for the relations between cam profiles and follower rollers. So, its design and manufacturing are very difficult. Thus, this study is a branch of exclusive CAM systems for design and NC machining of conjugate earn mechanism based on a master plate earn profile in order to exchange an old plate cam mechanism to a new conjugate earn mechanism. For the design of the other cam profile by using a master cam profile, some calculation processes were used by vector summation methods, from master cam profile data to the center data of master follower, from the center data of master follower to the center data of the other follower considered in link mechanism, and offsetting in the center direction of base circle of the other cam from the center data of the other follower. Finally, a sample conjugate cam was selected and machined m order to prove the contents of this study.

  • PDF

Kinematic Analysis of a Continuously Variable Valve Actuation Mechanism with Movable Second Cam Center (2차 캠 중심 이동형 연속가변밸브 구동기구의 기구학 해석)

  • Kim, Do-Joong;Kim, Yong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.7-15
    • /
    • 2009
  • This paper introduces a new variable valve actuation mechanism with movable second cam center. Valve lift and open duration can be continuously varied according to engine speed and load conditions. A new method to analyze the kinematic relations between the first and second cam profiles and valve motion are also introduced. Because of rocker motion of the second cam, conventional motion conversion program could not be used in this problem. An example shows continuous variations of valve motion and adequate ramp incorporation throughout all valve lift modes. Valve acceleration profile at the high lift mode is similar to that of conventional valvetrains. Contact geometry analysis of the mechanism gives basic information on the load conditions between the components.

Study on the Transient EHL Fluid Film for the Dynamic Contact Behaviors between Cam and Follower with Multigrid Multilevel Method (다중격자 다중차원 기법을 응용한 캠과 종동물의 비정상 상태의 유막특성 연구)

  • 장시열
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.132-139
    • /
    • 2004
  • Many researches about the contacts between cam and follower have investigated EHL film thickness either without dynamic loading effect or only with curve fitting formula such as Dowson-Hamrock's, because including squeeze film effect makes it hard to obtain convergence and stability of computation. Therefore, inaccurate information about minimum film thickness without dynamic loading condition causes inappropriate design of cam profiles and wrong selection of cam and follower materials. In this work, computation tools both for kinematics and dynamics of valve train system of push-rod type and for fluid film thickness with elastic deformation on the basis of dynamic loading condition with multigrid multi-level method is developed. The computational results of minimum film thickness with the respects of both static and dynamic loading conditions are compared for the contact of flat follower over the entire cycle.