• Title/Summary/Keyword: calibration parameters

Search Result 908, Processing Time 0.026 seconds

Camera Calibration Using the Fuzzy Model (퍼지 모델을 이용한 카메라 보정에 관한 연구)

  • 박민기
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.413-418
    • /
    • 2001
  • In this paper, we propose a new camera calibration method which is based on a fuzzy model instead of a physical camera model of the conventional method. The camera calibration is to determine the correlation between camera image coordinate and real world coordinate. The camera calibration method using a fuzzy model can not estimate camera physical parameters which can be obtained in the conventional methods. However, the proposed method is very simple and efficient because it can determine the correlation between camera image coordinate and real world coordinate without any restriction, which is the objective of camera calibration. With calibration points acquired out of experiments, 3-D real world coordinate and 2-D image coordinate are estimated using the fuzzy modeling method and the results of the experiments demonstrate the validity of the proposed method.

  • PDF

Accurate Calibration of Kinematic Parameters for Two Wheel Differential Drive Robots by Considering the Coupled Effect of Error Sources (이륜차동구동형로봇의 복합오차를 고려한 기구학적 파라미터 정밀보정기법)

  • Lee, Kooktae;Jung, Changbae;Jung, Daun;Chung, Woojin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Odometry using wheel encoders is one of the fundamental techniques for the pose estimation of wheeled mobile robots. However, odometry has a drawback that the position errors are accumulated when the travel distance increases. Therefore, position errors are required to be reduced using appropriate calibration schemes. The UMBmark method is the one of the widely used calibration schemes for two wheel differential drive robots. In UMBmark method, it is assumed that odometry error sources are independent. However, there is coupled effect of odometry error sources. In this paper, a new calibration scheme by considering the coupled effect of error sources is proposed. We also propose the test track design for the proposed calibration scheme. The numerical simulation and experimental results show that the odometry accuracy can be improved by the proposed calibration scheme.

IMPLEMENTATION OF DATA ASSIMILATION METHODOLOGY FOR PHYSICAL MODEL UNCERTAINTY EVALUATION USING POST-CHF EXPERIMENTAL DATA

  • Heo, Jaeseok;Lee, Seung-Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.619-632
    • /
    • 2014
  • The Best Estimate Plus Uncertainty (BEPU) method has been widely used to evaluate the uncertainty of a best-estimate thermal hydraulic system code against a figure of merit. This uncertainty is typically evaluated based on the physical model's uncertainties determined by expert judgment. This paper introduces the application of data assimilation methodology to determine the uncertainty bands of the physical models, e.g., the mean value and standard deviation of the parameters, based upon the statistical approach rather than expert judgment. Data assimilation suggests a mathematical methodology for the best estimate bias and the uncertainties of the physical models which optimize the system response following the calibration of model parameters and responses. The mathematical approaches include deterministic and probabilistic methods of data assimilation to solve both linear and nonlinear problems with the a posteriori distribution of parameters derived based on Bayes' theorem. The inverse problem was solved analytically to obtain the mean value and standard deviation of the parameters assuming Gaussian distributions for the parameters and responses, and a sampling method was utilized to illustrate the non-Gaussian a posteriori distributions of parameters. SPACE is used to demonstrate the data assimilation method by determining the bias and the uncertainty bands of the physical models employing Bennett's heated tube test data and Becker's post critical heat flux experimental data. Based on the results of the data assimilation process, the major sources of the modeling uncertainties were identified for further model development.

Simulation based Target Geometry Determination Method for Extrinsic Calibration of Multiple 2D Laser Scanning System (다중 2D 레이저 스캐너 시스템의 외부 표정요소 캘리브레이션을 위한 시뮬레이션 기반 표적 배치 결정 기법)

  • Ju, Sungha;Yoon, Sanghyun;Park, Sangyoon;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.443-449
    • /
    • 2018
  • Acquiring indoor point cloud, using SLAM (Simultaneous Localization and Mapping) based mobile mapping system, is an element progress for development of as-build BIM (Building Information Model) for the maintenance of the building. In this research we proposed a simulation-based target geometry determination for extrinsic calibration of multiple 2D laser scanning mobile system. Four different types of calibration sites were designed: (1) circle type; (2) rectangle type; (3) double circle type; and (4) double rectangle type. Based on the measurement values obtained from each simulated calibration site geometry, least squares solution based extrinsic calibration was derived. As a result, the rectangle type geometry is most suitable for extrinsic calibration of this system. Also, correlation values between extrinsic calibration parameters were high, and calibration results were distinct according to the calibration sites.

Study on the Parameter Estimation for Flight Dynamic Linear Model of Light Sport Aircraft (경량항공기 선형 비행운동모델 변수 추정에 관한 연구)

  • Kim, Eung-Tai;Seong, Kie-Jeong;Cremer, Matthias;Hischier, Damian
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.21-29
    • /
    • 2010
  • The main purpose of this study is to obtain linear models for the design of automatic flight controller in order to operate the Light Sport Aircraft as unmanned air vehicle. Flight test equipments installed on the aircraft to acquire flight test data are described and maneuvers for practical speed calibration are introduced. Parameters for the linear models of lateral and longitudinal motion are estimated by the Output error method as well as trim data analysis using the flight test data. Simulated data using the estimated parameters is shown to agree well with the measurement data. Estimated parameters obtained for several flight conditions can be used to improve the aerodynamic database of the simulation program.

실시간 전자거리인식을 위한 3차원거리계측 알고리즘

  • Kim, Jong-Man;Sin, Dong-Yong;Lee, Hye-Jeong;Kim, Hyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.5-5
    • /
    • 2010
  • The depth of the object pointed by the laser beam is computed depending on the pixel position on the CCD There involved several number of internal and external parameters such as inter-pixel distance, focal length, position and orientation of the system components in the depth measurement error. In this paper, it is shown through the error sensitivity analysis of the parameters that the most important parameters in the sense of error sources are the angle of the laser beam and the inter pixel distance. Also, the calibration technique to minimize their effect for the depth computation is proposed.

  • PDF

Calibration in Hybrid Ventilation Simulation: yes or no? (하이브리드 환기 시뮬레이션 모델의 보정: yes or no?)

  • Kim, Young-Jin;Park, Cheol-Soo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.130-135
    • /
    • 2009
  • This study investigates the need of calibrating a nodal network ventilation simulation model (CONTAMW 2.4). For this purpose, the series of ventilation experiments were conducted and then compared to simulation outputs from an uncalibrated simulation model, resulting in a significant difference between two. Hence, an optimization routine was employed to estimate unknown parameters in the simulation model. In the paper, the authors presents 1.3 unknown parameters with the validated simulation model. It was found that the model with estimated unknown parameters predicts the ventilation phenomena accurately.

  • PDF

Design of the broadband and compact phase-calibrator for array microphones (어레이 마이크로폰용 광대역 소형 위상교정기의 설계)

  • Ju, Hyeong-Sick;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1032-1035
    • /
    • 2004
  • Pressure distribution is measured by way microphones to identify noise sources in the space. For example, beam-forming method or acoustic holography use phase information to identify the source. Therefore, the phase is significant information to correctly identify the source position. However, due to the microphone characteristics and measuring systems, measured signals always have errors, which make the identification difficult. Therefore, phase calibration of microphones is needed. Duct and speaker systems are generally used as calibrators. Acoustic characteristics of the calibrator are, of course, functions of many Parameters of the system: i.e. duct size, frequency, and microphone spacing. In this paper, design parameters which effect on the performance and size of the calibrators are considered. Then the parameters would be applied to design and real product of the phase-calibrator.

  • PDF

Accurate Camera Calibration Method for Multiview Stereoscopic Image Acquisition (다중 입체 영상 획득을 위한 정밀 카메라 캘리브레이션 기법)

  • Kim, Jung Hee;Yun, Yeohun;Kim, Junsu;Yun, Kugjin;Cheong, Won-Sik;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.919-927
    • /
    • 2019
  • In this paper, we propose an accurate camera calibration method for acquiring multiview stereoscopic images. Generally, camera calibration is performed by using checkerboard structured patterns. The checkerboard pattern simplifies feature point extraction process and utilizes previously recognized lattice structure, which results in the accurate estimation of relations between the point on 2-dimensional image and the point on 3-dimensional space. Since estimation accuracy of camera parameters is dependent on feature matching, accurate detection of checkerboard corner is crucial. Therefore, in this paper, we propose the method that performs accurate camera calibration method through accurate detection of checkerboard corners. Proposed method detects checkerboard corner candidates by utilizing 1-dimensional gaussian filters with succeeding corner refinement process to remove outliers from corner candidates and accurately detect checkerboard corners in sub-pixel unit. In order to verify the proposed method, we check reprojection errors and camera location estimation results to confirm camera intrinsic parameters and extrinsic parameters estimation accuracy.

Calibration of the WASP4 Model Applied to Lake Paldang (WASP4 모형의 매개변수 추정 - 팔당호(八堂湖)를 중심으로 -)

  • Cho, Hong Yeon;Jun, Kyung Soo;Lee, Kil Seong;Han, Kwang Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.177-188
    • /
    • 1993
  • Model parameters of the WASP4 applied to Lake Paldang were estimated. The methodology is based on grouping water quality constituents and relevant parameters and successively estimating each group of parameters by a trial-and-error procedure. Chlorophyll a, nitrogen cycles, phosphorus cycles, BOD and DO were simulated at the complexity level 4. A water budget analysis using the monthly records of reservoir inflows and outflows in 1989 and 1990 was made to determine seasonally-averaged flowrates at model boundaries. Estimated flowrates were used, together with the seasonal average of water quality measurements in 1989 and 1990 for the calibration and verification, respectively, of the model. Grouping water quality constituents and associated parameters proved to be efficient in estimating a number of model parameters. From the results of model calibration and verification, it was found that quantitative evaluations of nonpoint and benthic sources of organic matters are essential. Benthic sources near the entrance of the Kyeongancheon were the most significant.

  • PDF