• Title/Summary/Keyword: calibration errors

Search Result 448, Processing Time 0.026 seconds

Calibration of an underwater robotic inspection system (수중탐상로봇시스템의 오차분석 및 보정)

  • 장종훈;김재열;김재희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.378-378
    • /
    • 2000
  • The permissible positioning error of the transducer used in reactor inspection must be within 10 mm. To implement the required precision it is necessary to manufacture all components affecting the positioning mechanism correctly and precisely. In addition, it is also necessary to handle error factors accurately. This paper describes the activities of the findings and corrections of the errors which were occurred in experiments. Those activities are; i) Categorization of error factors, ii) Cause analysis of errors, iii) Correction of errors founded in experiments by the analysis of laser induction type and by the validation of real measurement of horizontal, vertical baselines.

  • PDF

Location and Gain/Phase Calibration Techniques for Array Sensors with known Sources (기준신호원을 이용한 배열센서의 위치, 이득, 위상 보정기법)

  • Yoo, Seong Ki;Lee, Tae Beom;Shin, Ki Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.155-163
    • /
    • 2012
  • The geometrical and electrical errors of array sensors can severely degrade the performance of array sensor system. Various calibration techniques are developed to alleviate this problem. In this paper, two different calibration methods with respect to location, gain and phase of array sensors are presented. One method applies the first-order Taylor series expansion to approximate the true steering vector from the nominal values of array sensors. Then a set of equations is formed by using the null characteristics of the MUSIC spectrum to estimate errors of location, gain and phase of array sensors. Another method estimates these errors based on the data covariance matrix of pilot sources. From the simulations, it is demonstrated that two calibration algorithms calibrated an array system successfully. In addition to that, Fistas and Manikas's algorithm is more robust against noise than Ng and Lie's one when SNR is from 10dB to 50dB.

Robotic Workplace Calibration Using Teaching Data of Work-Piece Fixed in Robotic Workplace for Robot Off-line Programming (로봇 오프라인 프로그래밍을 위한 작업장에 고정된 공작물 교시 정보를 이용한 로봇작업장 보정)

  • Jeong, Jun Ho;Kuk, Kum Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.615-621
    • /
    • 2013
  • The robot calibration has greatly improved the absolute accuracy of the industrial robot. However, the accuracy of the relative positions of robotic tool-tip at work-points on a work-piece is only slightly corrected by the robot calibration since there has been no practical method to eliminate the elements of the setup position errors at a robotic workplace. A robotic workplace calibration is demonstrated in this paper to minimize the relative position errors between a robot tool-tip and the work-point on a work-piece. The existing teaching and playback method has been developed for the robotic workplace calibration. This paper uses the work-piece fixed in a robotic work-place as measurement equipment instead of a special robot measurement equipment for the robotic workplace calibration. The positive effect of the robotic workplace calibration is supported by the results of computer simulation on an ideal robotic workplace model and an experiment at the actual robotic workplace.

Extrinsic calibration using a multi-view camera (멀티뷰 카메라를 사용한 외부 카메라 보정)

  • 김기영;김세환;박종일;우운택
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we propose an extrinsic calibration method for a multi-view camera to get an optimal pose in 3D space. Conventional calibration algorithms do not guarantee the calibration accuracy at a mid/long distance because pixel errors increase as the distance between camera and pattern goes far. To compensate for the calibration errors, firstly, we apply the Tsai's algorithm to each lens so that we obtain initial extrinsic parameters Then, we estimate extrinsic parameters by using distance vectors obtained from structural cues of a multi-view camera. After we get the estimated extrinsic parameters of each lens, we carry out a non-linear optimization using the relationship between camera coordinate and world coordinate iteratively. The optimal camera parameters can be used in generating 3D panoramic virtual environment and supporting AR applications.

  • PDF

Antenna Array Calibration for Digital Beamforming (디지털 빔 형성을 위한 배열 안테나 오차 보정)

  • Choi, Hee-Young;Park, Hyung-Geun;Kim, Young-Soo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.501-505
    • /
    • 2003
  • There are many antenna array errors. They will distort the array beam pattern and result in an increased sidelobe level. A calibration technique is proposed for correcting the antenna array errors such as mutual coupling and unequal feeder characteristics. These are modeled as a matrix representing the interaction between the radiating elements. The matrix is estimated from the measured array response vectors. The antenna array errors are corrected by modifying the beamforming weight vector. It is verified by the electromagnetic simulation and experiment that the proposed technique reduces the sidelobe level and increases the antenna gain.

  • PDF

Antenna Array Calibration for Digital Beamforming (디지털 빔 형성을 위한 배열 안테나 오차 보정)

  • 최희영;박형근;김영수;방승찬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • There are many antenna array errors. They will distort the array beam pattern and result in an increased sidelobe level. A calibration technique is proposed for correcting the antenna array errors such as mutual coupling and unequal feeder characteristics. These are modeled as a matrix representing the interaction between the radiating elements. The matrix is estimated from the measured array response vectors. The antenna array errors are corrected by modifying the beamforming weight vector. It is verified by the electromagnetic simulation and experiment that the proposed technique reduces the sidelobe level and increases the antenna gain.

Error Analysis and Modeling of Airborne LIDAR System (항공라이다시스템의 오차분석 및 모델링)

  • Yoo Byoung-Min;Lee Im-Pyeong;Kim Seong-Joon;Kang In-Ku
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.199-204
    • /
    • 2006
  • Airborne LIDAR systems have been increasingly used for various applications as an effective surveying mean that can be complementary or alternative to the traditional one based on aerial photos. A LIDAR system is a multi-sensor system consisting of GPS, INS, and a laser scanner and hence the errors associated with the LIDAR data can be significantly affected by not only the errors associated with each individual sensor but also the errors involved in combining these sensors. The analysis about these errors have been performed by some researchers but yet insufficient so that the results can be critically contributed to performing accurate calibration of LIDAR data. In this study, we thus analyze these error sources, derive their mathematical models and perform the sensitivity analysis to assess how significantly each error affects the LIDAR data. The results from this sensitivity analysis in particular can be effectively used to determine the main parameters modelling the systematic errors associated with the LIDAR data for their calibration.

  • PDF

Accurate Calibration of Kinematic Parameters for Two Wheel Differential Drive Robots by Considering the Coupled Effect of Error Sources (이륜차동구동형로봇의 복합오차를 고려한 기구학적 파라미터 정밀보정기법)

  • Lee, Kooktae;Jung, Changbae;Jung, Daun;Chung, Woojin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Odometry using wheel encoders is one of the fundamental techniques for the pose estimation of wheeled mobile robots. However, odometry has a drawback that the position errors are accumulated when the travel distance increases. Therefore, position errors are required to be reduced using appropriate calibration schemes. The UMBmark method is the one of the widely used calibration schemes for two wheel differential drive robots. In UMBmark method, it is assumed that odometry error sources are independent. However, there is coupled effect of odometry error sources. In this paper, a new calibration scheme by considering the coupled effect of error sources is proposed. We also propose the test track design for the proposed calibration scheme. The numerical simulation and experimental results show that the odometry accuracy can be improved by the proposed calibration scheme.

Calibration of NDVI Error at Shadow Areas with GRABS : Focused on Cheong City (GRABS 이용한 그림자 영역에서의 정규식생지수의 오차보정 : 청주시를 대상으로)

  • Ban, Yong-Un;Na, Sang-Il;Lee, Tae-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.297-305
    • /
    • 2010
  • This study has intended to analyze the nature of the errors that occur as a result of shadows during the process of NDVI calculation using high-resolution satellite images of Cheongju City, in order to calibrate such errors, and to verify the results. This study has calibrated the shadow errors by utilizing the relationship between the Greenness above Bare Soil (GRABS) calculated through Tasseled-Cap transformation and the original NDVI. To verify the accuracy of the results, this study has compared the shadow area extracted by the difference between before and after calibration of NDVI, with the original shadow area. The NDVI value converged on the value of -1.0, representing water, because shadow areas could not accept the reflection value from each band. However, after performing Tasseled-Cap transformation, the NDVI of shadow areas that had converged on -1.0 prior to calibration had increased to a level similar to the NDVI of neighboring areas. In addition, the average NDVI in general had increased from -0.08 to -0.01. Finally, the shadow area drawn out was almost matched to the original one, meaning that the NDVI calibration method employed turned out to be highly accurate in extracting shadow areas.

Development of the Calibration Algorithm of 3 Axis Vector Sensor Using Ellipsoid (타원체를 이용한 3축 센서의 실시간 보정 알고리듬 개발)

  • Hwang, Jung Moon;Kim, Jung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.643-651
    • /
    • 2015
  • Multi-axis magnetic and accelerometer sensor are widely used in consumer product such as smart phones. The vector output of multi-axis sensors have errors on each axis such as offset error, scale error, non-orthogonality. These errors cause many problems on the performance of the applications. In this paper, we designed the effective inline compensation algorithm for calibrating of 3 axis sensors using ellipsoid for mass production of multi-axis sensors. The outputs with those kinds of errors can be modeled by ellipsoid, and the proposed algorithm makes sequential mappings of the virtual ellipsoid to perfect sphere which is calibrated function of the sensor on three-dimensional space. The proposed calibrating process composed of four main stages and is very straightforward and effective. In addition, another imperfection of the sensor such as the drift from temperature can be easily inserted in each mapping stage. Numerical simulation and experimental results shows great performance of the proposed compensation algorithm.