• Title/Summary/Keyword: calculation of mechanical variables

Search Result 79, Processing Time 0.023 seconds

The effective model of the human Acetyl-CoA Carboxylase inhibition by aromatic-structure inhibitors

  • Minh, Nguyen Truong Cong;Thanh, Bui Tho;Truong, Le Xuan;Suong, Nguyen Thi Bang;Thao, Le Thi Xuan
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.309-319
    • /
    • 2017
  • The research investigates the inhibition of fatty acid biosynthesis of the human Acetyl-CoA Carboxylase enzyme by the aromatic-structure inhibitors (also known as ligands) containing variables of substituents, contributing an important role in the treatment of fatty-acid metabolic syndrome expressed by the group of cardiovascular risk factors increasing the incidence of coronary heart disease and type-2 diabetes. The effective interoperability between ligand and enzyme is characterized by a 50% concentration of enzyme inhibitor ($IC_{50}$) which was determined by experiment, and the factor of geometry structure of the ligands which are modeled by quantum mechanical methods using HyperChem 8.0.10 and Gaussian 09W softwares, combining with the calculation of quantum chemical and chemico-physical structural parameters using HyperChem 8.0.10 and Padel Descriptor 2.21 softwares. The result data are processed with the combination of classical statistical methods and modern bioinformatics methods using the statistical softwares of Department of Pharmaceutical Technology - Jadavpur University - India and R v3.3.1 software in order to accomplish a model of the quantitative structure - activity relationship between aromatic-structure ligands inhibiting fatty acid biosynthesis of the human Acetyl-CoA Carboxylase.

Application of Multi-Layer Perceptron and Random Forest Method for Cylinder Plate Forming (Multi-Layer Perceptron과 Random Forest를 이용한 실린더 판재의 성형 조건 예측)

  • Kim, Seong-Kyeom;Hwang, Se-Yun;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.297-304
    • /
    • 2020
  • In this study, the prediction method was reviewed to process a cylindrical plate forming using machine learning as a data-driven approach by roll bending equipment. The calculation of the forming variables was based on the analysis using the mechanical relationship between the material properties and the roll bending machine in the bending process. Then, by applying the finite element analysis method, the accuracy of the deformation prediction model was reviewed, and a large number data set was created to apply to machine learning using the finite element analysis model for deformation prediction. As a result of the application of the machine learning model, it was confirmed that the calculation is slightly higher than the linear regression method. Applicable results were confirmed through the machine learning method.

Expansion of Sensitivity Analysis for Statistical Moments and Probability Constraints to Non-Normal Variables (비정규 분포에 대한 통계적 모멘트와 확률 제한조건의 민감도 해석)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1691-1696
    • /
    • 2010
  • The efforts of reflecting the system's uncertainties in design step have been made and robust optimization or reliabilitybased design optimization are examples of the most famous methodologies. The statistical moments of a performance function and the constraints corresponding to probability conditions are involved in the formulation of these methodologies. Therefore, it is essential to effectively and accurately calculate them. The sensitivities of these methodologies have to be determined when nonlinear programming is utilized during the optimization process. The sensitivity of statistical moments and probability constraints is expressed in the integral form and limited to the normal random variable; we aim to expand the sensitivity formulation to nonnormal variables. Additional functional calculation will not be required when statistical moments and failure or satisfaction probabilities are already obtained at a design point. On the other hand, the accuracy of the sensitivity results could be worse than that of the moments because the target function is expressed as a product of the performance function and the explicit functions derived from probability density functions.

Evaluation and solution of noise making weldment in automotive body (차체 이음 유발 용접 불량에 대한 분석과 해결 방안)

  • Cho, Jungho;Lee, Jungjae;Bae, Seunghwan;Lee, Yongki;Park, Kyungbae;Kim, Yongjun;Moon, Semin
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.18-22
    • /
    • 2015
  • The importance of emotional quality of car is getting higher in these days. Noise takes great portion in emotional quality because it is detectable problem with just a few rides. The sources of car noise during operation are various and the related technical issues are vast. Sometimes weldments of auto body are referred as the source of noise and the suspicious weldment shows unsatisfactory welding quality in most cases. In this research, cases of noise making weldments are investigated to figure out the solution for welding quality improvement. They are categorized into several groups in according to the inferred types of the error source then appropriate solutions are suggested. Auto body has weldments of resistance spot welding and gas metal arc welding in general. Therefore the solutions are suggested as adjustment of welding process variables and related machineries. Inevitable error source is also referred which is originated from thermal expansion rate difference between ultra high strength steel and mild steel. This new approach is validated through simple calculation then more concrete investigation with numerical analysis is remained as further works to be done.

Flexural behavior of reinforced recycled aggregates concrete beam after exposed to high temperatures

  • Longshou Qin;Xian Li;Ji Zhou;Ying Liang;Wangsheng Ou;Zongping Chen
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.201-210
    • /
    • 2023
  • This paper investigates the flexural behavior of reinforced recycled aggregates concrete (RRAC) beams after exposed to high temperatures. The experimental results from 17 specimens were present and compared with temperatures, recycled coarse aggregate (RCA) replacement percentages, and concrete strength as variables. It was found that the high temperature would not cause an observable change in the failure pattern. However, high temperature can significantly reduce the stiffness and ductility, and accelerate the damage degradation of specimens. After exposure to 600℃, the ultimate bearing capacity of the specimens decreased by 20%-30% The mechanical properties of RRAC beams after high temperatures were barely impacted by the replacement percentages. Increasing the concrete strength of RCA could effectively improve the bearing capacity and peak deflection of RRAC beams after exposed to high temperatures. Furthermore, the calculation method of the bending bearing capacity and deflection of RRAC beams was also discussed.

Similarity Relations of Resin Flow in Resin Transfer Molding Process

  • Um, Moon-Kwang;Byun, Joon-Hyung;Daniel, Isaac M.
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.135-152
    • /
    • 2009
  • Liquid molding processes, such as resin transfer molding, involve resin flow through a porous medium inside a mold cavity. Numerical analysis of resin flow and mold filling is a very useful means for optimization of the manufacturing process. However, the numerical analysis is quite time consuming and requires a great deal of effort, since a separate numerical calculation is needed for every set of material properties, part size and injection conditions. The efforts can be appreciably reduced if similarity solutions are used instead of repeated numerical calculations. In this study, the similarity relations for pressure, resin velocity and flow front propagation are proposed to correlate another desired case from the already obtained numerical result. In other words, the model gives a correlation of flow induced variables between two different cases. The model was verified by comparing results obtained by the similarity relation and by independent numerical simulation.

New Formulation Method for Reducing the Direct Kinematic Complexity of the 3-6 Stewart-Gough Platform

  • Song, Se-Kyong;Kwon, Dong-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.156-163
    • /
    • 2002
  • This paper presents a new formulation to simplify the three resulting constraint equations of the direct kinematics of the 3-6 (Stewart-Gough) Platform. The conventional direct kinematics of the 3-6 Platform has been formulated through complicated steps with trigonometric functions in three angle variables and thus results in the computational burden. In order to reduce the formulation complexity, we replace an angle variable into a length one and express three connecting joints on the moving platform in the same frame. The proposed formulation yields considerable abbreviation of the number of the calculation terms involved in the direct kinematics. It is verified through a series of simulation results.

Electromagnetic Force Calculation Using Magnetic Vector Potentials in 3-D Problems (자기벡터포텐셜을 이용한 3차원 전자력 계산)

  • 양재진;이복용;이기식
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.2
    • /
    • pp.106-111
    • /
    • 1996
  • Electric machines such as motors which have rmving parts are designed for producing mechanical force or torque. The accurate calculations of electromagnetic force and torque are important in the design these machines. Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. The former calculates forces by integrating the surface force densities which can be expressed in terms of Maxwell Stress Tensor(MST), and the latter by differentiating the electromagnetic energy with respect to the virtual dis¬placement of rigid bodies of interest. In the problems including current source, magnetic vector potentials(MVP) have rmstly been used as unknown variables for field analysis by a numerical method; e. g. FEM. This paper, thus, introduces the two both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetric FEM. It is found that the force calculation results are in good agreement for several mesh schemes.

  • PDF

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.

축류회전차 익말단 틈새유동에 대한 수치해석

  • No, Su-Hyeok;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.336-345
    • /
    • 1998
  • The substantial loss behind axial flow rotor was generated by wake, various vortices in the hub region and the leakage vortex in the tip region. Particularly, the leakage vortex formed near blade tip was one of the main causes of the reduction of performance, the generation of noise and the aerodynamic vibration in rotor downstream. In this study, the three-dimensional flowfields in an axial flow rotor for various tip clearances were calculated, and the numerical results were compared with the experimental ones. The numerical technique was based on SIMPLE algorithm using standard k-.epsilon. model (WFM). Through calculations, the effects of the tip clearance on the overall performance of rotor and the loss distributions, and the increase in the displacement, momentum, and blade-force-deficit thickness of the casing wall boundary layer were investigated. The mass-averaged flow variables behind rotor agreed well with the experimental results. The presence of the tip leakage vortex behind rotor was described well. Although the loci of leakage vortex by calculation showed some differences compared with the experimental results, its behavior for various tip clearances was clarified by examining the loci of vortex center.