Browse > Article
http://dx.doi.org/10.1163/156855109X428745

Similarity Relations of Resin Flow in Resin Transfer Molding Process  

Um, Moon-Kwang (Korea Institute of Materials Science, Composite Materials Group)
Byun, Joon-Hyung (Korea Institute of Materials Science, Composite Materials Group)
Daniel, Isaac M. (Departments of Civil and Environmental Engineering and Mechanical Engineering, Center for Intelligent Processing of Composites, Northwestern University)
Publication Information
Advanced Composite Materials / v.18, no.2, 2009 , pp. 135-152 More about this Journal
Abstract
Liquid molding processes, such as resin transfer molding, involve resin flow through a porous medium inside a mold cavity. Numerical analysis of resin flow and mold filling is a very useful means for optimization of the manufacturing process. However, the numerical analysis is quite time consuming and requires a great deal of effort, since a separate numerical calculation is needed for every set of material properties, part size and injection conditions. The efforts can be appreciably reduced if similarity solutions are used instead of repeated numerical calculations. In this study, the similarity relations for pressure, resin velocity and flow front propagation are proposed to correlate another desired case from the already obtained numerical result. In other words, the model gives a correlation of flow induced variables between two different cases. The model was verified by comparing results obtained by the similarity relation and by independent numerical simulation.
Keywords
Resin transfer molding; similarity relations of flow field; pressure relation; velocity relation; relation of flow front advancement time;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 R. Gauvin and F. Trochu, Key issues in numerical simulation for liquid composite molding processes, Polym. Compos. 19, 233–240 (1998)   DOI   ScienceOn
2 F. Trochu and R. Gauvin, Limitations of a boundary fitted finite difference method for the simulation of the resin transfer molding process, J. Reinf. Plast. Compos. 11, 772–786 (1992)   DOI
3 X. Sun, S. Li and L. J. Lee, Mold filling analysis in vacuum-assisted resin transfer molding. Part I: SCRIMP based on a high-permeable medium, Polym. Compos. 19, 807–816 (1998)   DOI   ScienceOn
4 R. Chen, C. Dong, Z. Liang, C. Chang and B. Wang, Flow modeling and simulation for vacuum assisted resin transfer molding process with the equivalent permeability method, Polym. Compos. 25, 146–164 (2004)   DOI   ScienceOn
5 M. K. Kang and W. I. Lee, A flow front refinement technique for the numerical simulation of the resin-transfer molding process, Compos. Sci. Technol. 59, 1663–1674 (1999)
6 Z. Cai, Simplified mold filling simulation in resin transfer molding, J. Compos. Mater. 26, 2606–2630 (1992)   DOI
7 D. Bender, J. Schuster and D. Heider, Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing, Compos. Sci. Technol. 66, 2265–2271 (2006)   DOI   ScienceOn
8 M. K. Um and W. I. Lee, A study on the mold filing process in resin transfer molding, Polym. Engng Sci. 31, 765–771 (1991)
9 R. J. Johnson and R. Pitchumani, Flow control using localized induction heating in a VARTM process, Compos. Sci. Technol. 67, 669–684 (2007)   DOI   ScienceOn
10 B. Liu, S. Bickerton and S. G. Advani, Modeling and simulation of resin transfer molding (RTM)-Gate control, venting and dry spot prediction, Composites Part A 27A, 135–141 (1996)   DOI   ScienceOn
11 E. B. Becker, G. F. Carey and J. T. Oden, Finite Elements-An Introduction. Prentice-Hall, UK (1981)
12 S. T. Lim and W. I. Lee, An analysis of the three-dimensional resin-transfer mold filling process, Compos. Sci. Technol. 60, 961–975 (2000)   DOI   ScienceOn
13 D. R. Nielsen and R. Pitchumani, Closed-loop flow control in resin transfer molding using realtime numerical process simulations, Compos. Sci. Technol. 62, 283–298 (2002)   DOI   ScienceOn
14 W. B. Young, Resin flow analysis in the consolidation of multi-directional laminated composites, Polym. Compos. 16, 250–257 (1995)   DOI   ScienceOn
15 M. Kaviany, Principles of Heat Transfer in Porous Media. Springer-Verlag, Germany (1991)
16 E. Ruiz, V. Achim, S. Soukane, F. Trochu and J. Bréard, Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites, Compos. Sci. Technol. 66, 475–486 (2006)   DOI   ScienceOn
17 J. P. Coulter, B. F. Smith and S. I. Guceri, Experimental and numerical analysis of resin impregnation during the manufacturing of composite materials, in: Proc. Amer. Soc. Compos. 2nd Tech. Conf., pp. 209–217 (1988)
18 A. Shojaei, S. R. Ghaffarian and S. M. H. Karimian, Simulation of the three dimensional nonisothermal mold filling process in resin transfer molding, Compos. Sci. Technol. 63, 1931–1948 (2003)   DOI   ScienceOn
19 L. Joubaud, V. Achim and F. Trochu, Numerical simulation of resin infusion and reinforcement consolidation under flexible cover, Polym. Compos. 26, 417–427 (2005)   DOI   ScienceOn
20 A. Boccard, W. I. Lee and G. S. Springer, Model for determining the vent locations and the fill time of resin transfer molds, J. Compos. Mater. 29, 306–333 (1995)   DOI   ScienceOn
21 M. R. Dusi, W. I. Lee, P. R. Ciriscioli and G. S. Springer, Cure kinetics and viscosity of Fiberite 976 resin, J. Compos. Mater. 27, 243–261 (1987)   DOI   ScienceOn
22 Y. E. Yoo and W. I. Lee, Numerical simulation of the resin transfer mold filling process using the boundary element method, Polym. Compos. 17, 368–374 (1996)   DOI   ScienceOn
23 X. A. Aduriz, C. Lupi, N. Boyard, J.-L. Bailleul, D. Leduc, V. Sobotka, N. Lefèvre, X. Chapeleau, C. Boisrobert and D. Delaunay, Quantitative control of RTM6 epoxy resin polymerisation by optical index determination, Compos. Sci. Technol. 67, 3196–3201 (2007)   DOI   ScienceOn
24 C.-Y. Chang, Numerical simulation of the pressure infiltration of fibrous preforms during MMC processing, Adv. Compos. Mater. 15, 287–300 (2006)   DOI   ScienceOn
25 D. Rouison, M. Sain and M. Couturier, Resin transfer molding of natural fiber reinforced composites: cure simulation, Compos. Sci. Technol. 64, 629–644 (2004)   DOI   ScienceOn
26 M. Henne, C. Breyer, M. Niedermeier and P. Ermanni, A new kinetic and viscosity model for liquid composite molding simulations in an industrial environment, Polym. Compos. 25, 255–269 (2004)   DOI   ScienceOn
27 A. Shojaei, A numerical study of filling process through multilayer preforms in resin injection/compression molding, Compos. Sci. Technol. 66, 1546–1557 (2006)   DOI   ScienceOn
28 K. M. Pillai and S. G. Advani, Numerical simulation of unsaturated flow in woven fiber preforms during the resin transfer molding process, Polym. Compos. 19, 71–80 (1998)   DOI   ScienceOn