• Title/Summary/Keyword: calcium-silicate-hydrate

Search Result 79, Processing Time 0.033 seconds

Diffusion study for chloride ions and water molecules in C-S-H gel in nano-scale using molecular dynamics: Case study of tobermorite

  • Zehtab, Behnam;Tarighat, Amir
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.305-317
    • /
    • 2016
  • Porous materials such as concrete could be subjected to aggressive ions transport. Durability of cement paste is extremely depended on water and ions penetration into its interior sections. These ions transport could lead different damages depending on reactivity of ions, their concentrations and diffusion coefficients. In this paper, chloride diffusion process in cement hydrates is simulated at atomistic scale using molecular dynamics. Most important phase of cement hydrates is calcium silicate hydrate (C-S-H). Tobermorite, one of the most famous crystal analogues of C-S-H, is used as substrate in the simulation model. To conduct simulation, a nanopore is considered in the middle of simulation cell to place water molecules and aggressive ions. Different chloride salts are considered in models to find out which one is better for calculation of the transport properties. Diffusion coefficients of water molecules and chloride ions are calculated and validated with existing analytical and experimental works. There are relatively good agreements among simulation outputs and experimental results.

The influence of L-arginine as an additive on the compressive strength and hydration reaction of Portland cement

  • Yildiz, Mine Kurtay;Gerengi, Husnu;Kocak, Yilmaz
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.237-246
    • /
    • 2022
  • The concrete quality relies on general factors like preparation technique, uniformity of the compaction, amount and appropriateness of the additives. The current article investigates the impact of a well knows amino acid, L-arginine as an additive on water requirements, setting durations and characterization of various cement samples. Compressive strength tests of reference and L-arginine added cements at age of 2, 7 and 28 days were carried out according to TS-EN 196-1. Samples were blended by incorporating various amounts of L-arginine (25 ppm, 50 ppm and 75 ppm) in the cement water mixture which were tested with Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TG), scanning electron microscopy (SEM) and the energy-dispersive X-ray spectroscopy (EDS) on the 28th day. Results revealed that L-arginine does not affect the setting time, volume expansion of cement and water demands negatively; rather it imparts enhanced sustainability to the samples. It was determined that the highest value belonged to the 75L mortar with an increase of 2.6% compared to the reference sample when the compressive strengths of all mortars were compared on the 28th day. Besides, it has been observed that the development of calcium silicate hydrate or C-S-H gel, calcium hydroxide or CH and other hydrated products are associated with each other. L-arginine definitely has a contribution in the consumption of CH formed in the hydration process.

DEVELOPMENT OF SUSTAINABLE CEMENTLESS MORTARS

  • Keun-Hyeok Yang;Seol Lee;Sang-Ho Nam
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1630-1636
    • /
    • 2009
  • Nine alkali-activated (AA) mortars were mixed and cured at water or air-dried conditions to explore the significance and limitation for the application of the combination of Ba and Ca ions as an alkali-activator. Ground granulated blast-furnace slag (GGBS) was used for source materials, and calcium hydroxide (Ca(OH)2) and barium hydroxide (Ba(OH)2) were employed as alkali activators. Test results clearly showed that the water curing condition was more effective than the air-dried curing condition for the formation of the denser calcium silicate hydrate (C-S-H) gels that had a higher molar Si/Ca ratio, resulting in a higher strength development. At the same time, the introduction of Ba(OH)2 led to the formation of 2CaO·Al2O3·SiO2·8H2O (C2ASH8) hydrates with higher molar Si/Al and Ca/Al ratios. Based on the test results, it can be concluded that the developed cementless mortars have highly effective performance and high potential as an eco-friendly sustainable building material.

  • PDF

The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator (가성알칼리와 탄산나트륨을 혼합한 활성화제를 사용한 알칼리 활성화 고로슬래그 모르타르의 강도 특성)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.745-752
    • /
    • 2012
  • This paper studies the effect of the compressive strength for combined alkali-activated slag mortars. The effect of activators such as alkali type and dosage factor on the strength was investigated. The alkalis combinations made using five caustic alkalis (sodium hydroxide (NaOH, A series), calcium hydroxide ($Ca(OH)_2$, B series), magnesium hydroxide ($Mg(OH)_2$, C series), aluminum hydroxide ($Al(OH)_3$, D series), and potassium hydroxide (KOH, E series)) with sodium carbonate ($Na_2CO_3$) were evaluated. The mixtures were combined in different dosage at 1M, 2M, and 3M. The study results showed that the compressive strength of combined alkali-activated slag mortars tended to increase with increasing sodium carbonate. The strength of combined alkali-activated slag mortars was better than that of control cases (without sodium carbonate). The result from scanning electron microscopy (SEM) analysis confirmed that there were reaction products of calcium silicate hydrate (C-S-H) and alumina-silicate gels from combined alkali-activated slag specimens.

Study on the immersion test of geopolymers made by recycling of coal ash (석탄회를 재활용한 지오폴리머 침지실험에 관한 연구)

  • Bang, John J.;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.199-205
    • /
    • 2018
  • A geopolymer was produced from coal ash generated from an integrated gasification combined cycle (IGCC) plant and its water resistance was evaluated. For this purpose, the geopolymer specimens were immersed in water for 30 days to measure changes in microstructure and alkalinity of the immersion liquid. Particularly, the experiment was carried out with foaming status of the geopolymers and parameters of room temperature aging condition, and immersion time. The foamed geopolymer containing 0.1 wt% Si-sludge had pores with a diameter of 1 to 3 mm and exhibited excellent foamability. Also, the calcium-silicate-hydrate crystal phase appeared in the foamed geopolymer. In the geopolymer immersion experiment, the pH of the immersion liquid increased with time, because the un-reacted alkali activator remained was dissolved in the immersion liquid. From the pH change of the immersion liquid, it was found that geopolymer reaction in the foamed specimen was completed faster than the non-foamed specimen. Through this study, it was possible to successfully produce foamed and non-foamed geopolymers recycled from IGCC coal ash. Also the necessary data for the safe application of IGCC coal ash-based geopolymers to areas where water resistance is needed were established; for example, the process conditions for room temperature aging time, effect of foaming status, immersion time and so on.

Reactive transport modeling of the $CO_2-H_2O$-cement reaction in a $CO_2$ injection well for $CO_2$ geological storage ($CO_2$ 지중저장 주입정에서의 $CO_2-H_2O$-시멘트 반응 운송 모델링)

  • Jo, Min-Ki;Chae, Gi-Tak;Choi, Byoung-Young;Yu, Soon-Young;Kim, Tae-Hee;Kim, Jeong-Chan
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.359-370
    • /
    • 2010
  • $CO_2$ leakage from a geological formation utilized for $CO_2$ storage could result in failure of the facility and threaten the environment, as well as human safety and health. A reactive transport model of a $CO_2-H_2O$-cement reaction was constructed to understand chemical changes in the case of $CO_2$ leakage through a cement crack in an injection well, which is the most probable leakage pathway during geological storage. The model results showed the dissolution of portlandite and CSH (calcium silicate hydrate) within the cement paste, and the precipitation of secondary CSH and calcite as the $CO_2$ plume migrated along the crack. Calcite occupied most of the crack after 3 year of reaction, which could be maintained until 30 years after crack development. The present results could be applied in the development of technology to prevent $CO_2$ leakage and to enhance the integrity of wells constructed for $CO_2$ geological storage.

Isothermal Conduction Calorimetry Analysis of Alkali Activated Slag Binder (알칼리 활성 슬래그 결합재의 미소수화열 분석)

  • Choi, Young-Cheol;Cho, Hyun-Woo;Oh, Sung-Woo;Moon, Gyu-Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.237-243
    • /
    • 2015
  • In this research, isothermal conduction calorimetry analysis has been conducted to investigate the reactivity of alkali activated slag binders. In order to secure the reactivity and workability of alkali activated slag binders, experiences with various types and concentrations of alkali activators were performed. Isothermal conduction calorimetry were measured with different alkali activators and mass ratio of $SO_3$ to binders as variables, and sodium tripolyphosphate ($Na_2P_3O_{10}$) and hydrated sodium borate ($Na_2B_4O_710H_2O$) were used to control setting time. As a results, alkali activated slag binders required alkali activators with 4 to 5 percent of concentration to accelerate the formation of calcium silicate hydrate(C-S-H) by alkali-activation, and overall heat generation rate delayed as accumulated heat decreased due to the high $SO_3$ contents. Moreover, the use of hydrated sodium borate as setting retarder causes elongated setting time due to delaying heat generation, so it can be considered that setting retarder played an important role in delaying total heat generation rate.

Effect of Morphology and Dispersibility of Silica Nanoparticles on the Mechanical Behaviour of Cement Mortar

  • Singh, Lok Pratap;Goel, Anjali;Bhattachharyya, Sriman Kumar;Ahalawat, Saurabh;Sharma, Usha;Mishra, Geetika
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.207-217
    • /
    • 2015
  • The influence of powdered and colloidal nano-silica (NS) on the mechanical properties of cement mortar has been investigated. Powdered-NS (~40 nm) was synthesized by employing the sol-gel method and compared with commercially available colloidal NS (~20 nm). SEM and XRD studies revealed that the powdered-NS is non-agglomerated and amorphous, while colloidal-NS is agglomerated in nature. Further, these nanoparticles were incorporated into cement mortar for evaluating compressive strength, gel/space ratio, portlandite quantification, C-S-H quantification and chloride diffusion. Approximately, 27 and 37 % enhancement in compressive strength was observed using colloidal and powdered-NS, respectively, whereas the same was up to 19 % only when silica fume was used. Gel/space ratio was also determined on the basis of degree of hydration of cement mortar and it increases linearly with the compressive strength. Furthermore, DTG results revealed that lime consumption capacity of powdered-NS is significantly higher than colloidal-NS, which results in the formation of additional calcium-silicate-hydrate (C-S-H). Chloride penetration studies revealed that the powdered-NS significantly reduces the ingress of chloride ion as the microstructure is considerably improved by incorporating into cement mortar.

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete

  • Yu, Zechuan;Lau, Denvid
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.335-349
    • /
    • 2017
  • To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.

Studies on structural interaction and performance of cement composite using Molecular Dynamics

  • Sindu, B.S.;Alex, Aleena;Sasmal, Saptarshi
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.147-163
    • /
    • 2018
  • Cementitious composites are multiphase heterogeneous materials with distinct dissimilarity in strength under compression and tension (high under compression and very low under tension). At macro scale, the phenomenon can be well-explained as the material contains physical heterogeneity and pores. But, it is interesting to note that this dissimilarity initiates at molecular level where there is no heterogeneity. In this regard, molecular dynamics based computational investigations are carried out on cement clinkers and calcium silicate hydrate (C-S-H) under tension and compression to trace out the origin of dissimilarity. In the study, effect of strain rate, size of computational volume and presence of un-structured atoms on the obtained response is also investigated. It is identified that certain type of molecular interactions and the molecular structural parameters are responsible for causing the dissimilarity in behavior. Hence, the judiciously modified or tailored molecular structure would not only be able to reduce the extent of dissimilarity, it would also be capable of incorporating the desired properties in heterogeneous composites. The findings of this study would facilitate to take step to scientifically alter the structure of cementitious composites to attain the desired mechanical properties.