Browse > Article
http://dx.doi.org/10.12989/acd.2018.3.2.147

Studies on structural interaction and performance of cement composite using Molecular Dynamics  

Sindu, B.S. (Academy of Scientific and Innovative Research)
Alex, Aleena (Academy of Scientific and Innovative Research)
Sasmal, Saptarshi (Academy of Scientific and Innovative Research)
Publication Information
Advances in Computational Design / v.3, no.2, 2018 , pp. 147-163 More about this Journal
Abstract
Cementitious composites are multiphase heterogeneous materials with distinct dissimilarity in strength under compression and tension (high under compression and very low under tension). At macro scale, the phenomenon can be well-explained as the material contains physical heterogeneity and pores. But, it is interesting to note that this dissimilarity initiates at molecular level where there is no heterogeneity. In this regard, molecular dynamics based computational investigations are carried out on cement clinkers and calcium silicate hydrate (C-S-H) under tension and compression to trace out the origin of dissimilarity. In the study, effect of strain rate, size of computational volume and presence of un-structured atoms on the obtained response is also investigated. It is identified that certain type of molecular interactions and the molecular structural parameters are responsible for causing the dissimilarity in behavior. Hence, the judiciously modified or tailored molecular structure would not only be able to reduce the extent of dissimilarity, it would also be capable of incorporating the desired properties in heterogeneous composites. The findings of this study would facilitate to take step to scientifically alter the structure of cementitious composites to attain the desired mechanical properties.
Keywords
Molecular dynamics; C-S-H; cement clinkers; mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Plassard, C., Lesniewska, E., Pochard, I. and Nonat, A. (2007), "Intrinsic elastic properties of Calcium Silicate Hydrates by nanoindentation", Proceedings of the 12th Inter. Cong. Chem. Cem.
2 Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19.   DOI
3 Richardson, I.G. (2008), "The calcium silicate hydrates", Cement Concrete Res., 38(2), 137-158.   DOI
4 Shahsavari, R., Buehler, M.J., Pellenq, R.J.M. and Ulm, F.J. (2009), "First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite", J. Am. Ceram. Soc., 92(10), 2323-2330.   DOI
5 Shannag, M.J. (2000), "High strength concrete containing natural pozzolan and silica fume", Cem. Concr. Compos., 22(6), 399-406.   DOI
6 Sindu, B.S. and Sasmal, S. (2015), "Evaluation of mechanical characteristics of nano modified epoxy based polymers using molecular dynamics", Comput. Mater. Sci., 96, 146-158.   DOI
7 Song, P.S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fiber-reinforced concrete", Constr. Build. Mater., 18(9), 669-673.   DOI
8 Thompson, A.P., Plimpton, S.J. and Mattson, W. (2009), "General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions", J. Chem. Phys., 131(15), 154107.   DOI
9 Velez, K., Maximilien, S., Damidot, D., Fantozzi, G. and Sorrentino, F. (2001), "Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker", Cem. Concr. Res., 31(4), 555-561.   DOI
10 Wu, W., Al-Ostaz, A., Cheng, A.H.D. and Song, C.R. (2011), "Computation of elastic properties of Portland cement using molecular dynamics", J. Nanomech. Micromech., 1(2), 84-90.   DOI
11 Zhou, J., Huang, J. and Jin, L. (2015), "Nano-micro modelling of mechanical properties of cement paste based on molecular dynamics", Adv. Cem. Res., 28(2), 73-83.
12 Bullard, J.W., Enjolras, E., George, W.L., Satterfield, S.G. and Terrill, J.E. (2010), "A parallel reactiontransport model applied to cement hydration and microstructure development", Model. Simul. Mater. Sci. Eng., 18(2), 025007.   DOI
13 Eftekhari, M. and Mohammadi, S. (2016), "Molecular dynamics simulation of the nonlinear behavior of the CNT-reinforced calcium silicate hydrate (C-S-H) composite", Compos. Part A: Appl. Sci. Manuf., 82, 78-87.   DOI
14 Golovastikov, N.I. (1975), "Crystal structure of tricalcium silicate, 3CaOSiO_2= C_3S", Sov. Phys. Crystallogr., 20, 441-445.
15 Heller, L. (1952), "The stucture of dicalcium silicate ${\alpha}$-hydrate", Acta Crystal, 5(6), 724-728.   DOI
16 Hu, C., Gao, Y., Chen, B., Zhang, Y. and Li, Z. (2016), "Estimation of the poroelastic properties of calciumsilicate-hydrate (CSH) gel", Mater. Design, 92, 107-113.   DOI
17 Jalal, M., Mansouri, E., Sharifipour, M. and Pouladkhan, A.R. (2012), "Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO 2 micro and nanoparticles", Mater. Design, 34, 389-400.   DOI
18 Merlino, S., Bonaccorsi, E. and Armbruster, T. (1999), "Tobermorites: Their real structure and orderdisorder (OD) character", Am. Min., 84(10), 1613-1621.   DOI
19 Jensen, B.D., Wise, K.E. and Odegard, G.M. (2016), "Simulation of mechanical performance limits and failure of carbon nanotube composites", Model. Simul. Mater. Sci. Eng., 24(2), 025012.   DOI
20 Masoumi, S. and Valipour, H. (2016), "Effects of moisture exposure on the crosslinked epoxy system: an atomistic study", Model. Simul. Mater. Sci. Eng., 24(3), 035011.   DOI
21 Merlino, S., Bonaccorsi, E. and Armbruster, T. (2000), "The real structures of clinotobermorite and tobermorite 9 A", Eur. J. Mineral., 12(2), 411-429.   DOI
22 Mohan, R., Jadhav, V., Ahmed, A., Rivas, J. and Kelkar, A. (2014), "Effect of plasticizer additives on the mechanical properties of cement composite-a Molecular Dynamics analysis", WASET, Inter. J. Chem. Mol. Nucl. Mater. Metal. Eng., 8(1), 84-88.
23 Murray, S., Subramani, V., Selvam, R. and Hall, K. (2010), "Molecular dynamics to understand the mechanical behavior of cement paste", J. Transp. Res Board, 2142, 75-82.   DOI
24 Nazari, A. and Riahi, S. (2011), "The effects of SiO 2 nanoparticles on physical and mechanical properties of high strength compacting concrete", Compos. Part B: Eng., 42(3), 570-578.   DOI
25 Ioannidou, K., Kanduc, M., Li, L., Frenkel, D., Dobnikar, J., Pellenq, R. and Del Gado, E. (2016), "Gelation of calcium-silicate-hydrate in cement", In APS Meeting Abstracts.
26 Pellenq, R.J.M., Kushima, A., Shahsavari, R., Van Vliet, K.J., Buehler, M.J., Yip, S. and Ulm, F.J. (2009), "A realistic molecular model of cement hydrates", Proc. Natl. Acad. Sci., 106(38), 16102-16107.   DOI
27 Bonaccorsi, E., Merlino, S. and Kampf, A.R. (2005), "The crystal structure of tobermorite 14 A (plombierite), a C-S-H phase", J. Am. Ceram. Soc., 88(3), 505-512.   DOI
28 Al-Ostaz, A., Wu, W., Cheng, A.D. and Song, C.R. (2010), "A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement", Compos. Part B: Eng., 41(7), 543-549.   DOI
29 Bentz, D.P., Coveney, P.V., Garboczi, E.J., Kleyn, M.F. and Stutzman, P.E. (1994), "Cellular automaton simulations of cement hydration and microstructure development", Model. Simul. Mater. Sci. Eng., 2(4), 783.   DOI
30 Bonaccorsi, E., Merlino, S. and Taylor, H.F.W. (2004), "The crystal structure of jennite, Ca 9 Si 6 O 18 (OH) 6.8H 2 O", Cement Concrete Res., 34(9), 1481-1488.   DOI