• Title/Summary/Keyword: calcium sulfate hemihydrate

Search Result 22, Processing Time 0.037 seconds

Synthesis of Fibrous Gypsum from By-Product Gypsum fo Phosphoric Acid Process (인산 석고로부터 섬유상 반수석고의 생성)

  • 배동식;이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.577-582
    • /
    • 1990
  • The synthesis conditions of fibrous calcium sulfate hemihydrate were investigated by using phosphogypsum and calcium sulfate hemihydrate. The unstable organogel was deposited by adding methanol to the saturated solution with gypsum at ageing temperature, and it was crystallized to fibrous gypsum hemihydrate while methanol was removed by rapid filtrating. In case of using calcium sulfate hemihydrate, fibrous $\beta$-calcium sulfate hemihydrate was formed by adding methanol of 67% to saturated solution at 6$0^{\circ}C$ and ageing for 5 minutes and filtering with suction. Minor components in phosphogypsum did not affect the reaction.

  • PDF

Hardening Characteristics and Microstructure Analysis of Blast Furnace Slag-Cement Mortar Replaced Alpha-calcium Sulfate Hemihydrate (알파반수석고 치환 고로슬래그 시멘트 모르타르의 경화특성 및 미세구조 분석)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Yoon, Min-Ho;Lee, Sang-Kyu;Seo, Won-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.18-19
    • /
    • 2017
  • In this study, hardening characteristics and microstructure of blast furnace slag-cement mortar replaced alpha-calcium sulfate hemihydrate were analyzed. As a result of replacing alpha-calcium sulfate hemihydrate with 0, 10, 20, 30%, it was confirmed that the initial and final setting times are faster than that of blast furnace slag-cement mortar. The compressive strength of the specimens containing alpha-calcium sulfate hemihydrate decreased in the range of 42 ~ 76% at age 28 days compared with blast furnace slag-cement mortar. In the case of replacing the alpha-calcium sulfate hemihydrate, the shrinkage did not occur more rapidly than the cement mortar, but the slope of the strain curve showed a linear behavior. The results of scanning electron microscopy images analysis showed that the formation of ettringite was increased at alpha-calcium sulfate hemihydrate replaced mortar.

  • PDF

Effects of Salts on the Formation of $\alpha$-Calcium Sulfate Hemihydrated from by-Product Gypsum of Phosphoric Acid Process at Hydrothermal Condition (가압수열 수용액중에서 인산석고로부터 $\alpha$형 반수석고의 생성에 미치는 염류의 영향)

  • 이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.343-348
    • /
    • 1987
  • The effects of salts such as aluminum sulfate as inorganic salt(2-4%), and sodium salts of citrate, tartrate, succinate, potassium tartrate and gelatin as organic salts(0.1%) on the formation of ${\alpha}$-calcium sulfate hemihydrate from by-product gypsum of phosphoric acid process under hydrothermal condition at 123$^{\circ}C$ and 133$^{\circ}C$ were investigated. Aluminum sulfate solution exhibited the catalystic effected on the crystallization of ${\alpha}$-calcium sulfate hemihydrate of which was assumed in the prismatic form, and organic salts solution exhibited little effect on the catalystic action to the crystallization, than inorganic salts. In the acidic solution with sulfuric acid(pH=2), needle like crystal of calcium sulfate hemihydrate was obtained. Hydrothermal process with aluminum sulfate solution also showed certain amounts of impurity removal such as phosphorus penataoxide from calcium sulfate hemihydrate.

  • PDF

Setting Time, Compressive Strength and Drying Shrinkage of Mortar with Alpha-Calcium Sulfate Hemihydrate (α형 반수석고를 치환한 모르타르의 응결 및 압축강도, 건조수축 특성)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.117-124
    • /
    • 2017
  • In this study, to evaluate the setting time, compressive strength and drying shrinkage of ordinary Portland cement and Portland blast-furnace slag cement mortar with 0, 10, 20, 30 wt.% alpha-calcium sulfate hemihydrate. As a results, as the replacement ratio of alpha-calcium sulfate hemihydrate increased, the initial setting time of ordinary Portland cement and Portland blast-furnace slag cement mortar was faster. In addition, the compressive strength decreased with increasing replacement ratio of alpha-calcium sulfate hemihydrate in both ordinary Portland cement mortar and Portland blast-furnace slag cement mortar. The strength development of Portland blast-furnace slag cement mortar with alpha-calcium sulfate hemihydrate was effective than that of ordinary Portland cement mortar. On the other hand, in the case of the mortar with alpha-calcium sulfate hemihydrate, it was confirmed that shrinkage deformation was reduced at the early age by growth pressure of needle-shaped ettringite crystals produced by incorporation of alpha-calcium sulfate hemihydrate. However, the effect of inhibiting shrinkage deformation of mortar with alpha-calcium sulfate hemihydrate was not significant as the age passed. Therefore, it is considered that the alpha-calcium sulfate hemihydrate is useful as a construction material.

Mechanical Properties of Alpha-Calcium Sulfate Hemihydrate Replaced Concrete for Application to Box Culvert Power Transmission (전력구 콘크리트 구조물 적용을 위한 알파형 반수석고 치환 콘크리트의 역학적 특성)

  • Shin, Kyoung-Su;Kim, Gyu-Yong;Sung, Gil-Mo;Woo, Sang-Kyun;Chu, In-Yeop;Lee, Bo-Kyeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • This study evaluated the mechanical properties of the alpha-calcium sulfate hemihydrate replaced concrete to reduce the cracking in a box culvert power transmission. After setting the replacement ratio of alpha-calcium sulfate hemihydrate at 0, 6, 9, 12, and 15%, the setting time, compressive strength, and drying shrinkage were measured and the microstructure and crystal structure were analyzed. As a result, it was confirmed that as the replacement ratio of alpha-calcium sulfate hemihydrate increased, the setting time decreased and the compressive strength declined. On the other hand, when the alpha-calcium sulfate hemihydrate was set with 15% of replacement ratio, about 60% reduction in the drying shrinkage was shown compared to that of ordinary Portland cement. Therefore, it is thought that when the concrete replacing the alpha-calcium sulfate hemihydrate is applied to a box culvert power transmission, the cracking reduction performance will be improved, and the improvement of compressive strength will be required.

Mechanical Properties of Concrete using Alpha-Calcium Sulfate Hemihydrate (알파형 반수석고를 활용한 콘크리트의 역학적 특성)

  • Shin, Kyoung-Su;Kim, Gyu-Yong;Sung, Gil-Mo;Woo, Sang-Kyun;Lim, Byung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.72-79
    • /
    • 2019
  • Concrete is vulnerable to cracks due to volume changes caused by temperature changes, shrinkage during curing, external forces, or poor construction. In particular, concrete placed in electric power tunnel structures can generate cracks by a variety of factors. As a result, these tunnel structures require continuous maintenance. In this study, we investigated the mechanical properties of electric power tunnel concrete using alpha-calcium sulfate hemihydrate, which is an industrial byproduct that has excellent expansion performance. To compensate for the decrease in compressive strength when substituting alpha-calcium sulfate hemihydrate, based on previous research, we added 9% alpha-calcium sulfate hemihydrate and adjusted the amount of admixture while using the same amount of cement. We then evaluated the mechanical properties of the concrete. The results showed that the compressive strength of the concrete was higher than that of ordinary Portland cement (OPC), and the shrinkage of concrete was reduced by more than 30% compared to that of OPC. Therefore, adding 9% of alpha-calcium sulfate hemihydrate is expected to have a significant effect in reducing concrete cracks.

Effect of Salts on the Formation of $\alpha$-Calcium Sulfate Hemihydrate from by-Product Gypsum of Phosphoric Acid Process under Water Vapor at Atmospheric Pressure (상압 수증기중에서 인산 석고로부터 $\alpha$형 반수석고의 생성에 미치는 염류의 영향)

  • 이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.300-306
    • /
    • 1988
  • The catalytic effect of salts on formation of ${\alpha}$-calcium sulfate hemihydrate under water vapor at atmospheric pressure was studied and the formation of q-calcium sulfate hemilydrate from by-product gypsum of phosphoric acid process was investigated. The order of catalytic effect of salts are as follow: Ammonium chloride>Sodium succinate>Calcium chloride>Sodium tartrate>Magnesium chloride The prismatic crystals was formed when ammonium chloride, calcium chloride and magnesium chloride was added, whereas the needle crystals was formed when sodium tartrate was added. Ammonium chlorideis most successful in catalytic effects in formation of ${\alpha}$-calcium sulfate hermihydrate for the by-product gypsum of phosphoric acid process.

  • PDF

Compressive Strength Characteristics of PHC Pile Substituted with α-Calcium Sulfate Hemihydrat (알파형 반수석고를 치환한 PHC파일의 압축강도 특성)

  • Shin, Kyoung-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.152-153
    • /
    • 2022
  • In this study, the mechanical properties of PHC Pile were investigated using α-calcium sulfate hemihydrate, an industrial by-product with excellent expansion performance. As a result, the compressive strength of PHC pile showed a tendency to be higher than that of general Portland cement (OPC).

  • PDF

Effects of Salts on the Hydration of $\alpha$-Calcium Sulfate Hemihydrate ($\alpha$형 반수석고의 수화에 미치는 염류의 영향)

  • 최상흘;이구종;홍성윤;이석곤
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.449-454
    • /
    • 1988
  • The effects of salts which was used as a catalysis in formation of $\alpha$-calciumusulfate hemihydrate from dicalcium sulfate hydrate were investigated on the hydration of $\alpha$-calciumsulfate hemihydrate. The hydration of $\alpha$-calciumsulfate hemihydrate was studied by the measurements of crystalline water, heat evolution. Also the hydrates were analyzed by XRD, DSC and SEM. The promotive effect each salts on the hydration was as follows: NaCl>NH4Cl>NaNO3>NH4NO3, and the hydration rate was accelerated with concentration of salts. The effect of Al2(SO4)3 and potassium sodium tartrate on the hydration was slmilar to water, whereas sodium succinate and gelatin retarded the hydration in comparision with water. These salts affected the hydration time but total heat evoution was similar.

  • PDF

Preparation of Calcium Sulfate Hemihydrate Using Stainless Refinery Sludge and Waste Sulfuric Acid

  • Eun, Hee-Tai;Ahn, Ji-Whan;Kim, Hwan;Kim, Jang-Su;Sung, Ghee-Woong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.432-436
    • /
    • 2001
  • In this study, calcium sulfate(gypsum) powder was obtained using waste sulfuric acid and stainless refinery sludge by- produced from chemical reagent and the iron industry, by the neutralization of waste sulfuric acid. As variables for the experiment the mole ratio of the H$_2$SO$_4$ : Ca(OH)$_2$, the pH, the reaction temperature and time, the amount of catalyst were used. The crystal shape and microstructure of obtained powder were observed by XRD and SEM, and the thermal property was investigated by DTA. As the NaCl is added 0~20wt% as a catalyst to the H$_2$SO$_4$ : Ca(OH)$_2$, system it can be found that the crystal shape goes through the processes as follows : gypsum dihydratlongrightarrowgypsum hemihydrate+gypsum dihydratelongrightarrowgypsum hemihydrate. And gypsum hemihydrate is $\beta$-type as the result of DTA. As waste sulfuric acid and stainless refinery sludge were used, the pH of reacted solution (which was 0.8) was rapidly raised up to 8~9 by the addition of stainless sludge and gypsum dihydrate was produced as a by-product. Therefore, it was found that stainless refinery sludge is sufficiently applicable for the neutralization of waste sulfuric acid.

  • PDF