• Title/Summary/Keyword: calcium phosphate glass

Search Result 32, Processing Time 0.021 seconds

Fabrication of Calcium Phosphate Glass Using Eggshell and its Crystallization Behavior

  • Kang, Tea-Sung;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.395-399
    • /
    • 2017
  • The thermal properties and crystallization behavior of calcium phosphate glass fabricated using eggshell were examined. Nature eggshell has several impurities in the main component of $CaCO_3$. To manufacture calcium phosphate glass, washed eggshell was dissolved in aqua-regia while adding a solution of isopropyl alcohol, D. I. water and phosphoric acid. The calcined precursor was melted at $1000^{\circ}C$, and the glass ($T_g$ : $540^{\circ}C$) was crystallized at $620{\sim}640^{\circ}C$, which temperature range is relatively low compared to the crystallization temperature of other general types of calcium phosphate glass. The calcium phosphate glass using eggshell was successfully crystallized without any additional nucleating agents due to the multiple effects of impurities such as $Fe_2O_3$, $Al_2O_3$, SrO and $SiO_2$ in the eggshell. The main crystalline phase was ${\beta}-Ca(PO_3)_2$ and a biocompatible material, hydroxyapatite, was also observed. The crystallization process was completed under the condition of a holding time of only 1 h at the low temperature.

Characteristics of Opal Glass by Calcium Phosphate Opacifier for a LED Light Diffuser (Calcium Phosphate 유백제 투입량에 따른 LED Diffuser용 유백유리의 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • We fabricated translucent opal glass to replace the polycarbonate diffuser in LED lighting systems in order to solve the durability problem. Batch materials of opal glass with a composition of calcium phosphate were created and melted at $1550^{\circ}C$, and the effect of opaqueness was identified by an addition of 1~7% calcium phosphate as an opacifier raw material. As a result, translucent opal glass was obtained by the melting of the mixed batch materials with a composition of more than 5% calcium phosphate glass at $1550^{\circ}C$ for 2 hrs, which had excellent optical properties for the diffuser of a LED lighting system with no dazzling from direct light by a high haze value exceeding 90% and a low parallel transmittance value of about 5%. For the thermal properties, the thermal expansion coefficient was found to be $5.6{\sim}5.9{\times}10^{-6}/^{\circ}C$ and the softening point was $874{\sim}884^{\circ}C$. In addition, good thermal properties such as good thermal shock resistance and feasibility for use with a general manufacturing process during the forming of glass tubes and bulbs were noted. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting due to its high heat resistance and high durability as a replacement for a polycarbonate diffuser.

The Effects of Calcium Phosphate Glass on Mouse Calvarial Cell (Calcium Phosphate Glass가 마우스 두개골 세포에 미치는 영향)

  • Kim, Min-Kyoung;Kim, Chang-Sung;Lee, Doug-Youn;Lee, Yong-Keun;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.49-59
    • /
    • 2004
  • The goal of periodontal treatment is not only to arrest the progression of the disease but also to promote the functional, esthetic regeneration of the periodontium. Flap operation, bone graft, guided tissue regeneration, growth factors and bone morphogenetic protein have been used for this purpose. Among these techniques of regeneration, alloplastic graft, especially calcium phosphate is getting more attention recently. The purpose of this study was to evaluate the effects of calcium phosphate glass on mouse calvarial cell in vitro. The toxicity of calcium phosphate glass was measured using MTT assay, the synthesis of collagen was measured using collagen assay, and ALP activity was measured. The experimental groups were cultured with calcium phosphate glass(both AQ-, and HT-CPG) in concentration of 0.01, 0.02, 0.1, 0.2g/ml. The results are as follows 1. In concentrations not exceeding 0.02g/ml, both the groups(AQ-CPG, HT-CPG) didn't show any toxicity on mouse calvarial cell(p<0.05). 2. In both the experimental groups are the concentration of 0.02g/ml, collagen expressions were significantly up-regulated (p<0.05). 3. In both the experimental groups are the concentration of 0.02g/ml, ALP activity was not significantly up-regulated, but ALP activity in both experimental groups were greater than control group(p<0.05). The results suggested that the use of calcium phosphate glass may promotes periodontal regeneration. Ongoing studies are necessary in order to determine their regeneration effects.

Novel Calcium Phosphate Glass for Hard-Tissue Regeneration

  • Lee, Yong-Keun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.273-298
    • /
    • 2008
  • Purpose: The aim of this review is to introduce a novel bone-graft material for hard-tissue regeneration based on the calcium phosphate glass(CPG). Materials and Methods: CPG was synthesized by melting and subsequent quenching process in the system of CaO-$CaF_2-P_2O_5$-MgO-ZnO having a much lower Ca/P ratio than that of conventional calcium phosphates such as HA or TCP. The biodegradability and bioactivity were performed. Effects on the proliferation, calcification and mineralization of osteoblast-like cells were examined in vitro. Influence in new bone and cementum formations was investigated in vivo using calvarial defects of Sprague-Dawley rats as well as 1-wall intrabony defect of beagle dogs. The application to the tissue-engineered macroporous scaffold and in vitro and in vivo tests was explored. Results: The extent of dissolution decreased with increasing Ca/P ratio. Exposure to either simulated body fluid or fetal bovine serum caused precipitation on the surface. The calcification and mineralization of osteoblast-like cells were enhanced by CPG. CPG promoted new bone and cementum formation in the calvarial defect of Sprague-Dawley rats after 8 weeks. The macroporous scaffolds can be fabricated with $500{\sim}800{\mu}m$ of pore size and a three-dimensionally interconnected open pore system. The stem cells were seeded continuously proliferated in CPG scaffold. Extracellular matrix and the osteocalcin were observed at the $2^{nd}$ days and $4^{th}$ week. A significant difference in new bone and cementum formations was observed in vivo (p<0.05). Conclusion: The novel calcium phosphate glass may play an integral role as potential biomaterial for regeneration of new bone and cementum.

Preparation and Characteristics of Bioactive Silica-free Calcium Phosphate Glass-ceramics (실리카를 함유하지 않는 생체활성 칼슘인산염 글라스-세라믹스의 합성 및 특성)

  • Song, Chang-Weon;Lee, Joo-Hyeok;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.217-221
    • /
    • 2011
  • Glass-ceramic materials, which consist of glass matrix phase containing crystalline ${\beta}-Ca_3(PO_4)_2$ and ${\beta}-Ca_2P_2O_7$, have been prepared by heating at $750-900^{\circ}C$ of calcium phosphate invert glasses in the silica-free $CaO-P_2O_5-TiO_2-Na_2O$, system. With increasing heating temperature from 750 to $900^{\circ}C$, the crystallite size of precipitated ${\beta}-Ca_3(PO_4)_2$ in glass with $55CaO{\cdot}35P_2O_5{\cdot}3TiO_2{\cdot}7Na_2O$ (mol%) composition increased from 48 to 91 nm. With the extension of the immersion time in dilute acetic acid solution (pH = 5) to ${\geq}$200 min, the degree of dissolution of $Ca^{2+}$ and $P^{5+}$ ions in the glass-ceramics was linearly increased and the solution was constantly maintained at pH = ~7. Biomimetic nanostructured (62-88 nm in average dia.), sphere-shaped hydroxyapatite was homogeneously formed on the surface of the glass-ceramics when socked for 7-14 days in a Hanks' solution, indicating bioactivity of the prepared glass-ceramics.

Hardening and Hydroxyapatite Formation of Bioactive Cement Prepared from Calcium Phosphosilicate Glass

  • Kim, Cheol-Young;Park, Sang-Jong
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.131-136
    • /
    • 1995
  • It has been reported that the biocement obtained by mixing $CaO-SiO_2-P_2O_5$ glass powders with ammonium phosphate solution has biocompatibility as will as high strength. The hardening mechanism and hydroxyapatite forming mechanism were discussed when $53.6%CaO_1,\; 38.1%SiO_2,\; 7.7P_2O_6,\; 0.6%CaF_2$(mole %) glass powder was reacted with ammonium phosphate solution and reacted in tris-buffer solution, respectively. High strength hardened biocement was obtained for the specimen with $CaNH_4PO_4\;H_2O$ crystal when the glass powder was mixed with ammonium phosphate solution, and hydroxyapatite crystal was rapidly formed only in the sample with $CaNH_4PO_4\;H_2O$ crystal when it was reacted in tris-buffer solution.

  • PDF

The effects of novel biodegradable amorphous Calcium Phosphate on bone regeneration in rat calvarial defects (새롭게 개발된 비정질의 Calcium Phosphate가 백서두개골의 골재생에 미치는 영향)

  • Choi, Jung-Yoo;Chae, Gyung-Joon;Kim, Chang-Sung;Lee, Yong-Keun;Cho, Kyoo-Sung;Chai, Joong-Kyu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.871-879
    • /
    • 2007
  • Purpose: The purpose of this study was to evaluate the bone regeneration of novel biodegradable amorphous calcium phosphate. Materials and Method: An 8-mm, calvarial, critical-size osteotomy defect was created in each of 20 male Sprague-Dawley rats(weight $250{\sim}300g$). The animals were divided into two groups of 10 animals each and allowed to heal for 2 weeks(10 rats). The first group was the control group and the other group was the experimental group which received the novel biodegradable calcium phosphate. Results: The healing of the calvarium in the control group was uneventful. The histologic results showed little bone formation in the control group. The experimental group which received the novel biodegradable calcium phosphate showed a normal wound healing. There were a lot of new bone formation around the biomaterial in 2 weeks. The bone formation increased in 8 weeks when compared to 2 weeks and there was a significant bone increase as well(P<0.01). The nobel biodegradable calcium phosphate showed statistical significance when compared to the control group (P<0.05). The novel biodegradable calcium phosphate in 8 weeks showed a significant increase in bone formation when compared to 2 weeks $(40.4{\pm}1.6)$(%). The biodegradable calcium phosphate which is made from mixing calcium phosphate glass(CPG), NaCO and NaOH solution, is biocompatible, osteoconductive and has a high potency of bone formation. Conclusion: We can conclude that the novel biodegradable calcium phosphate can be used as an efficient bone graft material for its biodegradability and osteoconductivity.

AN EXPERIMENTAL STUDY OF THE PULP RESPONSES ON THE EFFECT OF BASE MATERIALS BY REMAINING DENTIN THICKNESS (수종 이장재의 잔존상아질후경에 따른 성견치수반응에 대한 실험적 연구)

  • Yun, Ki-Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.2
    • /
    • pp.307-322
    • /
    • 1988
  • The purpose of this study is to evaluate the pulpal responses to the base materials such as zinc oxide eugenol cement, calcium hydroxide, zinc phosphate cement, polycarboxylate cement and glass ionomer cement. The 100 caries free dog teeth were devided into 2 groups by remaining dentin thickness (Group A: 0.4-0.6 mm, Group B: 0.8-1.0 mm) and each group were devided into 5 subgroups. The intervals of observation period are 3days, 1 week, 2 weeks, 4 weeks and 8 weeks respectively after experiment. The specimens were fixed with 10% formalin and decalcifed in 5% nitric acid. All specimens were stained with Hematoxylin-Eosin and examined histopathologically. The results were as follows. 1. In group A, atropy or hyperplasia in odontoblasts were seen in zinc oxide eugenol cement, calcium hydroxide and zinc phosphate cement. No changes in odontoblasts were seen in polycarboxylate cement and glass ionomer cement. 2. In group A, increase of predentin were seen in all experimental materials. 3. In group A, vascular congestion were seen in all experimental materials and inflammation were seen on 3 days in zinc oxide eugenol cement, 8 weeks in zinc phosphate cement and hemorrage were seen on 3 days in zinc phosphate cement. 4. In group B, changes of odontoblasts were not seen all experimental materials. 5. In group B, increase of predentin and vascular congestion were seen in all experimental materials but inflammation were not seen.

  • PDF

Development and Characterization of Translucent Opal Glass for Diffuser of LED Lighting (LED 조명용 반투명 유백유리 Diffuser 조성 개발 및 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.650-657
    • /
    • 2012
  • For the purpose of improving the durability problem, translucent opal glass was fabricated as a substitute for the polycarbonate diffuser of LED lighting. Calcium phosphate was used as an opacifier of opal glass and melted in an electric furnace. The opaque effect was identified according to the change of the cooling procedure. As results, translucent opal glass was obtained by the melting of a batch with a composition of 3.8% calcium phosphate at $1550^{\circ}C$ for 2 hrs and then the cooling of the material in the furnace. For the cooling condition of the glass sample, HTCG (High Temperature Cooled Glass) was found to have better optical properties than LTAG (Low Temperature Annealed Glass). It had excellent optical properties for a diffuser of LED lighting, with no dazzling from direct light due to its high haze value of over 99% and low parallel transmittance value of under 1%. For the thermal properties, it had an expressed thermal expansion coefficient of $5.7{\times}10^{-6}/^{\circ}C$ and a softening point of $876^{\circ}C$; it also had good thermal properties such as good thermal shock resistance and was easy to apply to the general manufacturing process in the forming of glass tubes and bulbs. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting with high heat resistance and high durability; this material is suitable as a substitute for polycarbonate diffusers.