• 제목/요약/키워드: calcium alginate immobilization

검색결과 35건 처리시간 0.017초

Eletron Microscopic Observation of Calcium-Acetylated Seaweed Alginate Gel

  • Jin Woo Lee
    • Journal of Life Science
    • /
    • 제9권1호
    • /
    • pp.45-49
    • /
    • 1999
  • Seaweed alginate was acetylated by activated carbon immobilized Pseudomonas syringae in a fluidized bed, up-flow reactor. The acetylation degree of seaweed alginate was about 30%. Calcium-acetylated seaweed alginate gel bead was made and compared to calcium-seaweed alginate gel bead by the scanning electron microscopy (SEM). Structural difference of two gel beads may results from increased viscosity and decreased affinity of acetylated seaweed alginate for calcium ion. On the basis of interior and exterior structure of calcium-acetylated seaweed alginate gels and property of acetylated seaweed alginate, it seems that acetylated seaweed alginate is used for the supporter for electrophoresis and packing materials for liquid chromatography and gel filtration.

  • PDF

Immobilization of Penicillium citrinum by Entrapping Cells in Calcium Alginate for the Production of Neo-Fructooligosaccharides

  • Lim, Jung-Soo;Park, Seung-Won;Lee, Jin-Won;Oh, Kyeong-Keon;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1317-1322
    • /
    • 2005
  • This work describes neo-fructooligosaccharides (neo-FOSs) production using the immobilized mycelia of Penicillium citrinum. Some critical factors were evaluated to optimize maximal production of neo-FOS. Optimal alginate and cell concentrations were determined to be $1.96\%$ alginate and $7.17\%$ cell, respectively, by statistical analysis. The optimal concentration of $CaCl_{2}$, which is related to bead stability, was determined to be 2 M. It was possible to increase the neo-FOS production by adding 15 units of glucose oxidase to the batch reaction. By co-immobilizing cells and glucose oxidase, neoFOS productivity increased $123\%$ compared with the whole-cell immobilization process. Based on the results above, a co-immobilization technique was developed and it can be utilized for large-scale production.

Immobilization and Characterization of Tannase from a Metagenomic Library and Its Use for Removal of Tannins from Green Tea Infusion

  • Yao, Jian;Chen, Qinglong;Zhong, Guoxiang;Cao, Wen;Yu, An;Liu, Yuhuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.80-86
    • /
    • 2014
  • Tannase (Tan410) from a soil metagenomic library was immobilized on different supports, including mesoporous silica SBA-15, chitosan, calcium alginate, and amberlite IRC 50. Entrapment in calcium alginate beads was comparatively found to be the best method and was further characterized. The optimum pH of the immobilized Tan410 was shifted toward neutrality compared with the free enzyme (from pH 6.4 to pH 7.0). The optimum temperature was determined to be $45^{\circ}C$ for the immobilized enzyme and $30^{\circ}C$ for the free enzyme, respectively. The immobilized enzyme had no loss of activity after 10 cycles, and retained more than 90% of its original activity after storage for 30 days. After immobilization, the enzyme activity was only slightly affected by $Hg^{2+}$, which completely inhibited the activity of the free enzyme. The immobilized tannase was used to remove 80% of tannins from a green tea infusion on the first treatment. The beads were used for six successive runs resulting in overall hydrolysis of 56% of the tannins.

Production of Alkaline Protease by Entrapped Bacillus licheniformis Cells in Repeated Batch Process

  • Mashhadi-Karim, Mohammad;Azin, Mehrdad;Gargari, Seyyed Latif Mousavi
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권12호
    • /
    • pp.1250-1256
    • /
    • 2011
  • In this study, Bacillus licheniformis cells were immobilized by entrapment in calcium alginate beads and were used for production of alkaline protease by repeated batch process. In order to increase the stability of the beads, the immobilization procedure was optimized by statistical full factorial method, by which three factors including alginate type, calcium chloride concentration, and agitation speed were studied. Optimization of the enzyme production medium, by the Taguchi method, was also studied. The obtained results showed that optimization of the cell immobilization procedure and medium constituents significantly enhanced the production of alkaline protease. In comparison with the free-cell culture in pre-optimized medium, about 7.3-fold higher productivity was resulted after optimization of the overall procedure. Repeated batch mode of operation, using optimized conditions, resulted in continuous production of the alkaline protease for 13 batches in 19 days.

Immobilization of Keratinase from Aspergillus flavus K-03 for Degradation of Feather Keratin

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • 제33권2호
    • /
    • pp.121-123
    • /
    • 2005
  • Extracellular keratinase isolated from Aspergillus flavus K-03 was immobilized on calcium alginate. The properties and reaction activities of free and immobilized keratinase with calcium alginate were characterized. The immobilized keratinase showed proteolytic activity against soluble azo-casein and azo-keratin, and insoluble feather keratin. Heat stability and pH tolerance of keratinase were greatly enhanced by immobilization. It also displayed a higher level of heat stability and an increased tolerance toward alkaline pHs compared with free keratinase. During the durability test at $40^{\circ}C$, 48% of the original enzyme activity of the immobilized keratinase was remained after 7 days of incubation. The immobilized keratinase exhibited better stability, thus increasing its potential for use in industrial application.

Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

  • Zhang, Shuang;Shang, Wenting;Yang, Xiaoxi;Zhang, Shujuan;Zhang, Xiaogang;Chen, Jiawei
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2741-2746
    • /
    • 2013
  • The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

한천올리고당의 생산을 위한 한천분해효소의 고정화 (Immobilization of Agarase for the Agarooligosaccharide Production)

  • 임동중;김봉조;배승권;김종덕;공재열
    • 한국미생물·생명공학회지
    • /
    • 제27권3호
    • /
    • pp.208-214
    • /
    • 1999
  • The condition for immobilization of the partially purified agarase from Bacillus cereus ASK202 and the properties of the immobilized enzyme have been investigated. Agarase was immobilized on various supports by entrapment method. The enzyme immobilized on Na-alginate bead showed the highest activity among those studied. The optimal reaction conditions of the immobilized agarase were obtained in 3%(w/v) Na-alginate for the matrix, bead diameter of 2.5mm, 1 unit of agarase solution and 1.0%(w/v) calcium chloride solution. The optimum pH and temperature of the immobilized agarase were pH and temperature of the immobilized agarase were pH 7.0 and 4$0^{\circ}C$, respectively. Km and Vmax values were 0.5mg/ml.min, respectively. The immobilized agarase conerted agar to agarobiose, and their total conversion ratio under the optimal condition was 89%.

  • PDF

포괄담체에 의한 Zymomonas mobilis 균체의 고정화 (Cell Immobilization of Zyrnornonas rnobilis by Entrapment)

  • 한면수;정동효
    • 한국미생물·생명공학회지
    • /
    • 제20권4호
    • /
    • pp.459-469
    • /
    • 1992
  • 세균을 고정화시켜 에탄올을 생산하기 위하여 4종류의 Zymomonas mobilis를 사용하였다. 이들 중 glucose와 sucrose로부터의 에탄올생성능이 가장 우수한 것으로 Zymomonas mobilis KCTC 1534를 선별하였다. 선별된 균주의 고정화 특성을 살펴본 결과 발효 최적온도와 pH는 각각 $33^{\circ}C$와 5.0으로 고정화 균체나 유리 균체에 대하여 큰 차이가 없었다. 그러나 최대 발효 가능온도는 유리 균체가 $37^{\circ}C$인데 비하여 alginate, k-carageenan, agar에 고정화했을 때 각각 43, 37, $40^{\circ}C$로서 균체를 고정화할 경우 유리균체에서 보다 높은 온도에서도 발효가 가능함을 확인하였다. Alginate 고정화 균체는 2% alginate 농도에 건조균체량 11.74g/$\ell$가 최적이었따. 고정화 균체의 활성화는 10% glucose 농도의 생산배지에서 20~25시간을 요 하였고 $4^{\circ}C$에 보관할 경우 calcium chloride 2%를 가한 증균배지에서 약 4주간은 전균체량의 90% 이상이, 10주간에는 80% 이상의 균체가 생존하였다.

  • PDF

Repeated Batch Production of Epothilone B by Immobilized Sorangium cellulosum

  • Park, Sang-Woo;Park, Su-Jeong;Han, Se-Jong;Lee, Jin-Won;Kim, Dong-Shik;Kim, Ji-Heung;Kim, Byung-Woo;Lee, Jee-Won;Sim, Sang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1208-1212
    • /
    • 2007
  • Production of extracellular epothilone B, one of the potent anticancer agents, by free and immobilized Sorangium cellulosum was studied using the repeated batch culture process. The concentration of alginate used in immobilization was directly related to the mass transfer rate of nutrients, mechanical stability, and the epothilone B production yield. With the optimized 3% (w/v) calcium alginate carrier, a prolonged repeated batch culture was investigated for the 5 repeated batches for 24 days. The maximum productivity of epothilone B obtained from the alginate-immobilized cells was 5.03 mg/l/day, which is 3 times higher than that of free cells (1.68 mg/l/day).

Survival of Bifidobacterium breve in Acidic Solutions and Yogurt, Following Immobilization in Calcium Alginate Beads

  • Lee, Ki-Yong;Kim, Ji-Youn;Yu, Won-Kyu;Lee, Yoon-Jong;Yoon, Sung-Sik;Heo, Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.412-417
    • /
    • 2001
  • Sodium alginate was used to immobilize Bifidobacterium breve ATCC 15700 cells. The ability of the Ca-alginate beads to protect the B. breve ATCC 15700 was evaluated under different conditions including alginate concentration, bead size, pH, hydrogen peroxide, and storage period. The survival of the B. Breve ATCC 15700 was estimated in pasteurized yogurt, containing either the immobilized or free cells, throughout the storage period. The survival cells in bead after exposure to acidic solution (pH 3.0) increased with increase of both the alginate gel concentration and bead size. Also, immobilized cells in alginate bead were more resistant than the free cells to hydrogen peroxide, storage period, and the environment inside yogur. When retreated beads with skim milk and nonretreated beads were tested in acidified pH 3.0 TPY media including acetic and lactic acid, the number of viable cells in the retreated bead was approximately 10-fold higher than that of nonretreated beads. This suggests that the skim milk operated as a material decreasing the diffusion of acid and hydrogen perosicde into alginate gels. From this research, it was found that yogurt itself supported immobilized cells with an improved protection from the extreme acidity in yogurt.

  • PDF