• Title/Summary/Keyword: calcareous sand

Search Result 18, Processing Time 0.021 seconds

Effect of Particle Crushing on the Results on DMT in Sand (입자 파쇄가 사질토의 DMT 결과에 미치는 영향)

  • Lee, Moon-Joo;Choi, Young-Min;Kim, Min-Tae;Bae, Kyung-Doo;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.740-746
    • /
    • 2010
  • Most important characteristics of calcareous sand are the particle angularity and hollow structure. These characteristics lead to the different behavior of calcareous sand compared to siliceous sand. This study performs a series of dilatometer test using calibration chamber, in order to analyze the effect of particle characteristic of calcareous sand on DMT indices. From experimental test, it is observed that the horizontal stress index($K_D$) and dilatometer modulus($E_D$) of calcareous Jeju sand is underestimated compared to siliceous sand. This is because the particle crushing during penetration induces the less contraction of the dilatometer membrane. A slightly smaller influence of particle crushing is reflected in $E_D$ rather than $K_D$, because $P_1$ pressure reflects the deformation characteristics of un-crushed particle relatively well. It is also observed that $K_D$ of Jeju sand is differently influenced by the vertical effective stress compared with that of siliceous sand.

  • PDF

Behaviour of unsaturated tuff- calcareous sand mixture on drying-wetting and triaxial paths

  • Goual, Idriss;Goual, Mohamed Sayeh;Taibi, Said;Abou-Bekr, Nabil
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.267-284
    • /
    • 2011
  • The aim of the paper is to study the hydro-mechanical behaviour of a tuff and calcareous sand mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying- wetting behaviour of the optimal mixture. Triaxial shear tests in saturated and unsaturated states at constant water content were carried out on samples initially compacted at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behaviour of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

Critical State Parameters of a High Compressible Jeju Sand (압축성이 큰 제주해사의 한계상태정수)

  • Lee, Moon-Joo;Hong, Sung-Jin;Choi, Young-Min;Kim, Min-Tae;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1383-1390
    • /
    • 2009
  • This study conducted a series of drained triaxial test in order to determine the critical state parameters of a high compressible Jeju sand. Jeju sand is classified into mixed sand containing both siliceous and calcareous materials and has high extreme void ratios due to the angularity of grains and the intra-particle voids of hollow particles. It is observed that the behavior of Jeju sand is similar to that of general calcareous sand. The friction angle of Jeju sand at critical state gradually decreases with increasing the mean effective stress. Test result shows that the particle crushing resulted from stress during shear causes the reduction of void ratio at critical state.

  • PDF

Dilatometer test for evaluating deformation characteristics in sand (사질토의 변형특성 평가를 위한 딜라토미터 시험의 활용)

  • Lee, Moon-Joo;Hong, Sung-Jin;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.241-252
    • /
    • 2010
  • This study investigates the application of dilatometer test for evaluating the deformation characteristics of granular soil. $K_D$ is the most sensitive to the stress history among CPT and DMT measurements, and $E_D$ and $q_c$ are observed to be similarly affected by the stress history. The coefficient of at-rest earth pressure($K_0$) is an indirect measure evaluating the stress history of granular soil. A relation using only DMT indices provides appropriate prediction of $K_0$ values. Although penetration of dilatometer inevitably induces the failure of cementation bonds, $E_D$ reflects the deformation characteristics of undamaged cementation relatively well. Therefore, a slightly better prediction of M value for cemented sand is achieved by using $E_D$ rather than $q_c$. Because of the weaker particle strength of calcareous sand compared than quartz sand, the majority of sand particles adjacent to dilatometer probe will be crushed during penetration. The particle crushing will induce the less contraction of the dilatometer membrane during penetration, consequently, the smaller $K_D$ and $E_D$ of calcareous sand.

  • PDF

Critical State of Crushable Jeju Beach Sand (파쇄성이 큰 제주해사의 한계상태 특성)

  • Lee, Moon Joo;Bae, Kyung Doo;An, Sung Mo;Lee, Woo Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.133-140
    • /
    • 2010
  • A series of triaxial test was performed in order to determine critical state parameters of calcareous Jeju sand, which comprises angular shape particles with many pores in the surface. It is observed that Jeju sand mainly shows the contractive behavior during triaxial shear due to high extreme void ratios and large compressibility. The peak friction angle of Jeju sand decreases slightly with increasing mean effective stress due to the particle crushing of carbonate materials. However, the peak friction angle of Jeju sand is higher than that of other silica sands because of the more angular particle shape. The critical state friction angle of Jeju sand gradually decreases when the mean effective stress at a critical state increases. Whereas, there is not a clear influence of void ratio on the critical state friction angle. Critical state parameters of Jeju sand are similar to those of calcareous sands, but significantly larger than those of common sands.

Evaluation of Cone resistance of A Jeju Sand and Its Cementation Possibility (제주해사의 콘선단저항 및 고결가능성 평가)

  • Lee, Moon-Joo;Kim, Jae-Jeong;Shim, Jai-Beom;Lim, Chai-Geun;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1407-1414
    • /
    • 2009
  • In this study, a Jeju sand, which contains both siliceous and calcareous materials, was sampled from a beach in Jeju Island. It is observed that the Jeju sand has high extreme void ratios due to the angularity of grains and the intra-particle voids of hollow particles. From cone penetration test using calibration chamber system, it is found that the cone tip resistance($q_c$)-relative density(Dr)-vertical effective stress(${\sigma_v}'$) relation of Jeju sand almost matches to that of high compressible quartz sand. However, this correlation overestimates the relative density of a coastal sediments in Jeju Island maybe due to the cementation effect of this area. From analysis of the results of cone penetration and SPS tests at a coastal area in Jeju Island, it seems reasonable to assume that the coast of Jeju Island is a natural cemented sediments.

  • PDF

Investigation on ground displacements induced by excavation of overlapping twin shield tunnels

  • Qi, Weiqiang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Shao, Xiaokang;An, Hongbin
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.531-546
    • /
    • 2022
  • Ground displacements caused by the construction of overlapping twin shield tunnels with small turning radius are complex, especially under special geological conditions of construction. To investigate the ground displacements caused due to shield machines in the unique calcareous sand layers in Israel for the first time and determine the main factors affecting the ground displacements, field monitoring, laboratory geological analysis, theoretical calculations, and parameter studies were adopted. By using rod extensometers, inclinometers, total stations, and automatic segment-displacement monitors, subsurface tunneling-induced displacement, surface settlement, and displacement of the down-track tunnel segments caused by the construction of an up-track tunnel were analyzed. The up-track tunnel and the down-track tunnel pass through different stratum, resulting in different construction parameters and ground displacements. The laws of variation of thrust and torque, soil pressure in the chamber, excavated soil quantity, synchronous grouting pressure, and grout volume of the two tunnels from parallel to fully overlapping orientations were compared. The thrust and torque of the shield in the fine sand are larger than those in the Kurkar layer, and the grouting amount in fine sand is unstable. According to fuzzy statistics and Gaussian curve fitting of the shield tunneling speed, the tunneling speed in the Kurkar stratum is twice that in the fine-sand stratum.

Evaluation of Cementation Effect of Jeju Coastal Sediments (제주연안 퇴적층의 고결 평가)

  • Lee, Moon-Joo;Kim, Jae-Jeong;Shim, Jai-Beom;Lim, Chai-Geun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.105-115
    • /
    • 2009
  • The Jeju sand was sampled from the beach in Jeju Island and its basic properties were analyzed. The cementation effect of Jeju coastal sediments was evaluated from in-situ tests such as SPT, CPT, and the Suspension-PS test. It was shown from test results that the Jeju sand has high extreme void ratios due to the angularity of grains and the intra-particle voids of hollow particles, similar to typical calcareous sands. From cone penetration test in the calibration chamber, it was found that the cone resistance($q_c$)-relative density($D_R$)-vertical effective stress(${\sigma}_v'$) relation of Jeju sand almost matches that of high compressible quartz sand. However, the $q_C-D_R-{\sigma}_v'$ correlation suggested for uncemented Jeju sand overestimates the relative density of coastal sediments of Jeju Island due to the cementation effect. From the analysis of the relation of cone resistance, N value, and small strain shear modulus measured in-situ, it seems reasonable to assume that the coastal sediment of Jeju Island is a naturally cemented one.

Development of Coastal Sanddunes at Kimnyong-Wolchung Beach in Jejudo (제주 김녕-월정 사구의 발달과정에 관하여)

  • Park, Kyeong;Son, Ill;Chang, Eun-Mi
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.4
    • /
    • pp.851-864
    • /
    • 2004
  • A coastal dune field, located at Kimnyong-Wolchung beach in Jejudo, Korea, extends alongshore for about 4 km, with dunes extending inland about 6 km. Detailed geomorphological analysis of the area was carried out by using areal photography and Landsat images. Samples were collected across two transects, and physical and chemical properties are analyzed to detect the variation of both properties depending on distance form the beach. Paleosol layers found during the field trip suggest that dune emplacement is episodic. Radiocarbon dates from nearby Hyupjae beach indicate that dunes have been formed during the late Holocene by the disturbance of calcareous materials.

  • PDF