• Title/Summary/Keyword: cable sag

Search Result 59, Processing Time 0.031 seconds

Estimation of Tension Forces of Stay Cables (인장 케이블의 장력 추정기법에 관한 연구)

  • Kim, Nam-Sik;Jeong, Woon;Seo, Ju-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.121-126
    • /
    • 2002
  • In a recent construction industry, cable supported structures such as a cable-stayed bridge or space stadium have been increasingly constructed. Generally the stay cables as a critical member should be adjusted to be satisfied with the design tension forces. In this purpose, a vibration method has been applied to estimate the tension forces exerted to the existing stay cables. In this study, cable vibration tests were carried out to estimate the cable tension forces comparing with theoretical and practical formulas. From the measured frequencies obtained from free vibration and impulsive tests, the accuracy of 1he estimated tension forces is confirmed according to use only the first single mode or higher multiple modes.

  • PDF

Study of seismic performance of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun;Yu, Zhou-Jun
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1203-1221
    • /
    • 2015
  • By taking a cable-stayed-suspension hybrid bridge with main span of 1400 m as example, seismic response of the bridge under the horizontal and vertical seismic excitations is investigated numerically by response spectrum analysis and time history analysis, its seismic performance is discussed and compared to the cable-stayed bridge and suspension bridge with the same main span, and considering the aspect of seismic performance, the feasibility of using cable-stayed-suspension hybrid bridge in super long-span bridges is discussed. Under the horizontal seismic action, the effects of structural design parameters including the cable sag to span ratio, the suspension to span ratio, the side span length, the subsidiary piers in side spans, the girder supporting system and the deck form etc on the seismic performance of the bridge are investigated by response spectrum analysis, and the favorable values of these design parameters are proposed.

Mechanical Characteristics of Cable Truss Roof Systems (케이블 트러스 지붕 시스템의 역학적 특성)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • Cable structures are lightweight structures of flexible type, cable members have only axial stiffness related to tension, they can carry neither bending nor compression. This study is the analysis of cable truss systems are composed of upper and low cables by connecting bracing cables, the structural principle is based on a tensegrity system by using bracing tension members, discontinuous compression members and continuous tension members. A hanging roof of cable truss system is too flexible against vertical loads, most cable members are stabilized by connecting the prestressed upper and lower cable by bracing cables. A cable truss roof system is formed by adding a set of cables with reverse curvature to the suspension cables. With the sets of cables having opposite curvature to each other, cable truss is able to carry vertical load in both upward and downward direction with equal effectiveness, and then a cable truss acts as load bearing elements by the assemble of ridge cables, valley cables and bracing cables. This paper will be shown the geometric non-linear analysis result of cable truss systems with various sag ratio for deflections and tensile forces, the analytical results are compared with the results of other researchers.

Aeroelastic Behaviors of Self-anchored Suspension Bridge with Lateral Sag of Main Cable(I) -Focused on the Behavior of Girder- (횡방향 새그를 가진 자정식 현수교의 공탄성 거동(I) -주형의 거동을 중심으로-)

  • Kwon, Soon Duck;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.259-267
    • /
    • 1997
  • Wind tunnel test results and their interpretations focused on the behavior of girder, which were performed to study the aerodynamic stability of a self-anchored suspension bridge with lateral sag of main cable, are presented in this paper The shape of the girder which has the best aerodynamic stability was selected based on the section model test under uniform and turbulent flow conditions. Good performance of the selected section was confirmed in the full bridge model test. Measured flutter derivatives are presented for further study. Buffeting response was investigated to check the fatigue problem and serviceability of the bridge but it was found to be acceptable from the engineering point of view. Even though the drag coefficient of the girder had high value, the amplitude of the lateral vibration was found to be very low. This may be due to the restraint provided by the lateral sag of the cables.

  • PDF

Experimental Verification of Sag Sensitivities using Catenary Model for PPWS Configuration Control in a Suspension Bridge (모형 현수선을 이용한 현수교 PPWS 형상관리를 위한 새그민감도의 실험적 검증)

  • Jeong, Woon;Seo, Ju Won;Lee, Sung Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.711-721
    • /
    • 2014
  • PPWS, a large number of which a main cable of a suspension bridge consists of, must be precisely erected at a target location under construction considering the differences among design conditions. The absolute sag is measured for several PPWSs, which are reference strands and the relative sag is surveyed from them to other PPWSs, which are divided into several groups. And the adjustment of PPWS length is performed to erect it at target configuration. When PPWS is being under erection in a real bridge site, the procedures are as follows; evaluate sag sensitivities according to sag variation factors, calculate an adjustment length of PPWS corresponding to them and adjust a sag of PPWS by controlling the calculated amount of PPWS length. In this study, the differential-related equations of sag sensitivity were proposed for support movement of PPWS. Before site demonstration study of a series of them, we established a catenary model system and accomplished verification tests of them. From test results, the validation of them was done.

Estimation of main cable tension force of suspension bridges based on ambient vibration frequency measurements

  • Wang, Jun;Liu, Weiqing;Wang, Lu;Han, Xiaojian
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.939-957
    • /
    • 2015
  • In this paper, a new approach based on the continuum model is proposed to estimate the main cable tension force of suspension bridges from measured natural frequencies. This approach considered the vertical vibration of a main cable hinged at both towers and supported by an elastic girder and hangers along its entire length. The equation reflected the relationship between vibration frequency and horizontal tension force of a main cable was derived. To avoid to generate the additional cable tension force by sag-extensibility, the analytical solution of characteristic equation for anti-symmetrical vibration mode of the main cable was calculated. Then, the estimation of main cable tension force was carried out by anti-symmetric characteristic frequency vector. The errors of estimation due to characteristic frequency deviations were investigated through numerical analysis of the main cable of Taizhou Bridge. A field experiment was conducted to verify the proposed approach. Through measuring and analyzing the responses of a main cable of Taizhou Bridge under ambient excitation, the horizontal tension force of the main cable was identified from the first three odd frequencies. It is shown that the estimated results agree well with the designed values. The proposed approach can be used to conduct the long-term health monitoring of suspension bridges.

Design of Lead-Shear Damper for Stay Cables (사장교 케이블 진동감소용 납-전단 댐퍼의 설계)

  • 안상섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.490-495
    • /
    • 2000
  • This paper presents the dynamic behavior of stay cable with Lead-Shear damper( LSD) near the support. This kind of research about the dynamic behavior of LSD is essential to design LSD in order to mitigate the ambient vibration of stay cable. The hysteresis curve of LSD was assumed to be perfect elasto-plastic behavior based on the real hysteretic behavior of such lead-based dampers. Mechanical model of LSD was equivalent Kelvin model and sag effect of stay cable was considered. Yielding force (also referred as size) of LSD was selected as a design parameter. Effects of tension of stay cable and installation point of LSD were studied. It was found that optimal size of LSD exists for each case of stay cable.

  • PDF

Influence of cable loosening on nonlinear parametric vibrations of inclined cables

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.219-237
    • /
    • 2007
  • The effect of cable loosening on the nonlinear parametric vibrations of inclined cables is discussed in this paper. In order to overcome the small-sag limitation in calculating loosening for inclined cables, it is necessary to first derive equations of motion for an inclined cable. Using these equations and the finite difference method, the effect of cable loosening on the nonlinear parametric response of inclined cables under periodic support excitation is evaluated. A new technique that takes into account flexural rigidity and damping is proposed as a solution to solve the problem of divergence. The regions of inclined cables that undergo compression are also indicated.

Nonlinear Analysis of Curved Cable-Membrane Roof Systems (굴곡형 케이블-막 지붕 시스템의 비선형 해석)

  • Park, Kang-Geun;Kwun, Ik-No;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.

Wind-tunnel study of wake galloping of parallel cables on cable-stayed bridges and its suppression

  • Li, Yongle;Wu, Mengxue;Chen, Xinzhong;Wang, Tao;Liao, Haili
    • Wind and Structures
    • /
    • v.16 no.3
    • /
    • pp.249-261
    • /
    • 2013
  • Flexible stay cables on cable-stayed bridges are three-dimensional. They sag and flex in the complex wind environment, which is a different situation to ideal rigid cylinders in two-dimensional wind flow. Aerodynamic interference and the response characteristics of wake galloping of full-scale parallel cables are potentially different due to three-dimensional flows around cables. This study presents a comprehensive wind tunnel investigation of wake galloping of parallel stay cables using three-dimensional aeroelastic cable models. The wind tunnel study focuses on the large spacing instability range, addressing the effects of cable separation, wind yaw angle, and wind angle of attack on wake galloping response. To investigate the effectiveness of vibration suppression measures, wind tunnel studies on the transversely connected cable systems for two types of connections (flexibility and rigidity) at two positions (mid-span and quarter-span) were also conducted. This experimental study provides useful insights for better understanding the characteristics of wake galloping that will help in establishing a guideline for the wind-resistant design of the cable system on cable-stayed bridges.