• 제목/요약/키워드: cPDM

Search Result 53, Processing Time 0.021 seconds

Statistical Analysis for Creep Crack Growth Behavior of Modified 9Cr-1Mo Steel (Modified 9Cr-1Mo 강의 크리프 균열성장 거동에 관한 통계적 해석)

  • Jung, Ik-Hee;Kim, Woo-Gon;Yin, Song-Nan;Ryu, Woo-Seog;Kim, Seon-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.283-289
    • /
    • 2009
  • This paper dealt with a statistical analysis for evaluating the creep crack growth rate (CCGR) for Modified 9Cr-1Mo (ASTM Grade 91) steel. The CCGR data was obtained by the creep crack growth (CCG) tests conducted under various applied loads at $600^{\circ}C$. To obtain logically the B and q values used in the CCGR equation, three methods such as the least square fitting method (LSFM), the mean value method (MVM) and the probabilistic distribution method (PDM) were adopted and their CCGR lines were compared, respectively. In addition, a number of random variables were generated by using the Monte Carlo simulation (MCS), and the CCGR lines were predicted probabilistically. It was found that both the B and q coefficients followed a 2-parameter Weibull distribution well. In the case of the ranges of 10-90% for the probability variables, P(B, q), the CCGR lines were predicted. Fractographic study was conducted from the specimen after the CCG tests.

COS MEMS System Design with Embedded Technology (Embedded 기술을 이용한 COS MEMS 시스템 설계)

  • Hong, Seon Hack;Lee, Seong June;Park, Hyo Jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.405-411
    • /
    • 2020
  • In this paper, we designed the COS MEMS system for sensing the falling detection and explosive noise of fuse link in COS (Cut Out Switch) installing on the power distribution. This system analyzed the failure characteristics and an instantaneous breakdown of power distribution. Therefore, our system strengths the industrial competence and guaranties the stable power supply. In this paper, we applied BLE (Bluetooth Low Energy) technology which is suitable protocol for low data rate, low power consumption and low-cost sensor applications. We experimented with LSM6DSOX which is system-in-module featuring 3 axis digital accelerometer and gyroscope boosting in high-performance mode and enabling always-on low-power features for an optimal motion for the COS fuse holder. Also, we used the MP34DT05-A for gathering an ultra-compact, low power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface. The proposed COS MEMS system is developed based on nRF52 SoC (System on Chip), and contained a 3-axis digital accelerometer, a digital microphone, and a SD card. In this paper of experiment steps, we analyzed the performance of COS MEMS system with gathering the accelerometer raw data and the PDM (Pulse Data Modulation) data of MEMS microphone for broadcasting the failure of COS status.

Preparation and Permeation Characteristics of PTMSP-PDMS-Silica/PEI Composite Membranes (PTMSP-PDMS-Silica/PEI 복합막의 제조 및 투과특성)

  • Lee, Hyun-Kyung;Hong, Se-Lyung
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.146-156
    • /
    • 2008
  • In this study, PTMSP of high permeability and high molecular weight was synthesized, and PTMSP-PDMS graft copolymer was synthesized from poly [1-(trimethylsily)propyne] (PTMSP) and hydroxy-terminated poly(dimethylsiloxane) (PDMS). The PTMSP-PDMS-silica composites were prepared by the addition of 15, 30, or 50 wt% tetraethoxysilane (TEOS) to PTMSP-PDMS graft copolymer by sol-gel process. To investigate the physico-chemical characteristics of PTMSP-PDMS-silica/PEI composite membranes, the analytical methods such as $^1H$-NMR, FT-IR, TGA, XPS, GPC, and SEM have been utilized. The gas permeability and selectivity properties of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4,\;n-C_4H_{10}$, were evaluated. Permeability of the composite membranes increased as TEOS content and pressure increased. Selectivity of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4,\;and\;n-C_4H_{10}$, showed the maximum value at 30 wt% of TEOS content and decreased thereafter.

Gas Permeation of CO2 and N2 through PDMS-HNT and PDMS-mHNT Composite Membranes (PDMS-HNT과 PDMS-mHNT 복합막을 통한 CO2와 N2의 기체투과)

  • Lee, Seul Ki;Hong, Se Ryeong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.67-76
    • /
    • 2018
  • In this study, PDMS-HNT and PDMS-mHNT composite membranes were prepared by the addition of halloysite nanotube (HNT) and modified HNT (mHNT) to PDMS. To investigate the physico-chemical characteristics of composite membranes, analytical methods such as FT-IR, XRD, TGA, and SEM were utilized. The gas permeability and selectivity properties of $N_2$ and $CO_2$ were evaluated. In particular, the PDMS-HNT with 10 wt% HNT and PDMS-mHNT with 5 wt% mHNT showed the highest $CO_2/N_2$ selectivity and $CO_2$ permeability at $35^{\circ}C$, respectively. Overall, PDMS-HNT and PDMS-mHNT composite membranes improved the $CO_2/N_2$ selectivity compared to that of using PDMS membrane.

Advanced Work Packaging (AWP) in Practice: Variables for Theory and Implementation

  • Jung, Youngsoo;Jeong, Yeheun;Lee, Yunsub;Kang, Seunghee;Shin, Younghwan;Kim, Youngtae
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.201-206
    • /
    • 2020
  • Diversification of project delivery methods (PDM) under ever-changing construction business environment has significantly changed the role of project participants. Active efforts to effectively sharing the roles and responsibilities have been observed in the project management offices (PMOs) among owner/operator organizations as well as engineering, procurement, construction and maintenance (EPCM) firms. In order for being effective in a holistic way throughout the project life-cycle, a PMO needs to have 'adequate management skills' as well as 'essential technical capabilities' in cooperating with many different participants. One of the well-known examples of the PMO's tool to support these skills and capabilities is the effective 'work packaging (WP)' that serves as a common basis integrating all relevant information in a structured manner. In an attempt to enhance the construction productivity, the concept of 'advanced work packing (AWP)' has been introduced by Construction Industry Institute (CII). The AWP enables productivity to be improved by early planning of construction packages in the design phase "with the end in mind". The purpose of this study is to identify and evaluate the 'variables' of advanced work packing (AWP) for life-cycle information integration. Firstly, an extended concept of advanced WP based on the CII AWP was defined in order to comprehend many different issues of business functions (e.g. cost, schedule, quality, etc.). A structured list of major components and variables of AWP were then identified and examined for practical viability with real-world examples. Strategic fits and managerial effectiveness were stressed throughout the analyses. Findings, implications and lessons learned are briefly discussed as well.

  • PDF

Study on the Pervaporation Seperation of Aqueous 1-Butanol Mixture Using Composite PEI/PDMS Membrane (1-Butanol / 물 혼합액의 PEI/PDMS 복합막 모듈을 이용한 투과증발 파일럿 분리특성)

  • Cheon, Bong su;Lee, Choong Sub;Ha, Sung Yong;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.352-357
    • /
    • 2015
  • To determine the pervaporation separation characteristics of 1-butanol/water mixtures, PEI/PDMS hollow fiber membrane module commercialized by Airrane Co. was subjected to both lab and pilot tests. The 1% 1-butanol of 1-butanol/water feed mixture was used. The flux of $133g/m^2hr$ and separation factor of 23.4 at $30^{\circ}C$ were obtained whereas the $505g/m^2hr$ and 5.1 were measured at $50^{\circ}C$. When compared with the performance of the hollow fiber PDMS membrane by Nagasep Co., the higher flux of $10{\sim}20g/m^2hr$ was obtained by the module of Airrane Co. In order to realized the durability of Airrane Co. module, the long-term test of 35 days has been conducted and as a result, the flux $510{\sim}520g/m^2hr$ and separation factor 20~25 were maintained with the initial values.

Development of Polymeric Nanopaclitaxel and Comparison with Free Paclitaxel for Effects on Cell Proliferation of MCF-7 and B16F0 Carcinoma Cells

  • Yadav, Deepak;Anwar, Mohammad Faiyaz;Garg, Veena;Kardam, Hemant;Beg, Mohd Nadeem;Suri, Suruchi;Gaur, Sikha;Asif, Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2335-2340
    • /
    • 2014
  • Paclitaxel is hydrophobic in nature and is recognized as a highly toxic anticancer drug, showing adverse effects in normal body sites. In this study, we developed a polymeric nano drug carrier for safe delivery of the paclitaxel to the cancer that releases the drug in a sustained manner and reduces side effects. N-isopropylacrylamide/vinyl pyrrolidone (NIPAAm/VP) nanoparticles were synthesized by radical polymerization. Physicochemical characterization of the polymeric nanoparticles was conducted using dynamic light scattering, transmission electron microscopy, scanning electron microscopy and nuclear magnetic resonance, which confirmedpolymerization of formulated nanoparticles. Drug release was assessed using a spectrophotometer and cell viability assays were carried out on the MCF-7 breast cancer and B16F0 skin cancer cell lines. NIPAAm/VP nanoparticles demonstrated a size distribution in the 65-108 nm range and surface charge measured -15.4 mV. SEM showed the nanoparticles to be spherical in shape with a slow drug release of ~70% in PBS at $38^{\circ}C$ over 96 h. Drug loaded nanoparticles were associated with increased viability of MCF-7 and B16F0 cells in comparison to free paclitaxel. Nano loaded paclitaxel shows high therapeutic efficiency by sustained release action for the longer period of time, i increasing its efficacy and biocompatibility for human cancer therapy. Therefore, paclitaxel loaded (NIPAAm/VP) nanoparticles may provide opportunities to expand delivery of the drug for clinical selection.

Controllable Patterning of an Al Surface by a PDMS Stamp (PDMS를 이용한 균일한 알루미늄 표면 패터닝 연구)

  • Park, Gayun;Kim, Kyungmin;Lee, Hoyeon;Park, Changhyun;Kim, Youngmin;Tak, Yongsug;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.501-504
    • /
    • 2012
  • In this study, etched Al electrodes with ordered arrays of pits and high aspect ratios were successively obtained using a patterned protect layer on the Al surface prepared with soft lithography method. Various methods were applied to fabricate a well ordered protect layer on the Al surface and the difference of etched Al surfaces with and without a protect layer was investigated by using SEM. It was found that the etched Al surfaces were affected by using either a protect layer or a non protect layer. As a result, the Al surface with the well ordered pits could be achieved by protect layer. However, the etched Al with nonuniform pits can be obtained without any protect layers.

Preparation and Adhesion of One Part Room Temperature Curable Alkoxy Type Silicone Sealant (일액형 알코올형 실리콘 실란트의 제조 및 접착 물성)

  • Kim, Dae-Jun;Park, Young-Jun;Kim, Hyun-Joong;Lee, Bong Woo;Han, Jae Chul
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • Silicone sealants are composed of polymer, plasticizer, crosslinker, catalyst and filler. Types and compositions of components are effected on sealant performances. In recent, use of alkoxy type silicone sealant increased due to environmental advantage. In this study, we investigated effects of component types and ratios on one-part room temperature curable alkoxy type silicone sealant preparation and adhesion properties. Alkoxy type silicone sealants were prepared with various PDMS (polydimethylsiloxane) viscosities. In addition, the effect of plasticizer, crosslinkers, and catalyst on sealant obtained from by mixture of PDMS viscosities of 20000 and 80000 was investigated. Reaction temperature on change of mixing time was observed, and then proper crosslinking systems were found. Adhesion (properties) of silicone sealants were measured. In the sealants preparation, stable reaction was achieved by adjusting composition variance ratio in the sealant mixture temperature below $40^{\circ}C$. The adhesion properties of sealant differ from substrate composition. The order of adhesion strength was glass/glass > glass/aluminum > aluminum/aluminum system. The elongation of sealant was increased as polymer viscosity and plasticizer content increased. The strength was increased as crosslinker and plasticizer decreased, while catalyst increased.

  • PDF

Dispersion Polymerization of Acrylate Monomers in Supercritical $CO_2$ using GMA-functionalized Reactive Surfactant (초임계 이산화탄소에서 Glycidyl methacrylate 반응성 계면활성제를 이용한 아크릴레이트의 분산중합)

  • Park, Kyung-Kyu;Kang, Chang-Min;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.256-262
    • /
    • 2010
  • Dispersion polymerization of methyl acrylate, ethyl acrylate, butyl acrylate, and glycidyl methacrylate were performed in supercritical $CO_2$ at $80\;^{\circ}C$ and 346 bar. Glycidyl methacrylate linked poly(dimethylsiloxane) (GMS-PDMS) surfactant, which was prepared by linking glycidyl methacrylate to monoglycidyl ether terminated PDMS with amino-propyltriethoxysilane, was used as surfactant for the dispersion polymerization in $CO_2$. The yield of the poly(alkyl acrylate) polymers, synthesized in $CO_2$ medium, decreased as the alkyl tail of the acrylate monomers increased. Poly(glycidyl methacrylate) and poly(methyl acrylate) were produced in bead form whereas poly(ethyl acrylate) and poly(butyl acrylate) were viscous liquid. The poly(glycidyl methacrylate) particles had a number average diameter of 2.45 ${\mu}m$ and monodisperse distribution. The poly(methyl acrylate) had a number average diameter of 0.52 ${\mu}m$ and the particle size distribution was bimodal. The glass transition temperatures ($T_g$) of the poly(glycidyl methacrylate) and the poly(alkyl acrylate) products were 4~9 K higher than the $T_g$ of the corresponding acrylate polymers synthesized in conventional processes.