• Title/Summary/Keyword: cGMP

Search Result 318, Processing Time 0.027 seconds

Effect of KH-305 on the Nitric Oxide Synthase Activity and Erectile Dysfunction in Young Rats (KH-305 투여가 흰쥐 음경조직의 Nitric Oxide Synthase활성 및 Erectile Dysfunction에 미치는 영향)

  • Lee, Eun-Jeong;Kim, Hee-Seok;Kim, Byoung-Chul;Hwang, Sung-Wan;Hwang, Sung-Yeoun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.3
    • /
    • pp.305-310
    • /
    • 2007
  • This study was designed to investigate the effects of KH-305 on erectile dysfunction in young rats, via nitric oxide (NO)-cGMP pathways. After oral administration of the KH-305 mixture (50, 100, 200, 300 mg/kg) to young rats for 10 days, NOS and SOD protein expressions in penile tissue and testosterone in plasma were measured. cGMP degradation was also investigated using bovine vascular smooth muscle cells pretreated with an NO donor, S-nitroso-N-Acetylpenicillamine (SNAP). The penile expression levels of nNOS and eNOS-dependent NOS activities as well as SOD preventing oxidative stress by overproduction of NO were increased significantly. Also, the concentration of testosterone in the plasma was increased. In vitro, cGMP concen-trations were decreased dose dependently in the KH-305. These results suggest that KH-305 may be useful in erectile dysfunction.

Effect of Cholecystokinin-pancreozymin on the Nitric Oxide Synthase Activity and Cyclic GMP Level in Rat Pancreatic Tis-sue

  • Seo, Dong-Wan;Nam, Suk-Woo;Nam, Tae-Kyun;Lee, Young-Jin;Ko, Young-Kwon;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.434-439
    • /
    • 1995
  • In pancreatic cells, NO formation is associated with increased levels of cGMP and endocrine/exocrine secretion. In the present study, the role of NO in the regulation of exocrine secretion was investigated in rat pancreatic tissues. Treatment of rat pancreatic tissue with sholecystokinin-pancreozymin (CCK-PZ) resulted in an significant increase in arginine conversion to citruline, the amount of nitrite/nitrate, the release of amylase, and the level of cGMP. Furthermore, CCK-PZ stimulated increase of amylase release and conversion of arginine to citrulline transformation were counteracted by the inhibitor of NO synthase, $N^G-nitro-L-arginine$ methyl ester. The results on the time course of CCK-PZ-induced citrulline formation within the first seconds of simulation. The kinetics of citrulline accumulation correlate well with those of cGMP rise, which further confirms the conclusion that NO mediates the response to CCK-PZ by cGMP.

  • PDF

Purification of the Glycomacropeptide from Cheese Whey (치즈 유청으로부터 Glycomacropeptide의 분리.정제)

  • Yoon, Y.C.;Cho, J.K.;Song, C.H.;Lee, S.;Chung, C.I.
    • Food Science of Animal Resources
    • /
    • v.20 no.2
    • /
    • pp.159-165
    • /
    • 2000
  • Glycomacropeptide(GMP) was purified from cheese whey which is obtaining as a byproduct in cheese producing. Cheese whey was first concentrated 10 times with a ultrafiltration aparratus, and then heated at 95$^{\circ}C$ for 5 min. The concentrated fraction was centrifuged at 20,000$\times$g for 30 min to remove fat layer. The supernatant layer enriched GMP protein was fractionated by ion exchange chromatography on DEAE-Sepharose Fast Flow column. GMP was bound to DEAE resin and eluted with 0.1~0.25 M NaCl when using a linear NaCl gradient from 0 M to 0.5 M. The purified GMP gave a single band of 24 kDa which seems to be trimer molecular weight in SDS-PAGE, and migrated to the same molecular weight with control GMP obtained commercially. Its amino acid composition were consistent with that of standard GMP. About 0.71 g of GMP was recovered from 1 L of cheese whey. These results indicate that glycomacropeptide could be simply purified from cheese whey by using ultrafiltration and DEAE column chromatography.

  • PDF

Vasorelaxant properties of cyclic nucleotide phosphodiesterase inhibitors in rat aorta (흰쥐 대동맥에서 cyclic nucleotide phosphodiesterase 억제제들의 혈관 이완 특성)

  • Kang, Hyung-sub;Choi, Cheol-ho;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.615-624
    • /
    • 2003
  • Vascular smooth muscle relaxation is modulated by an increase in cGMP subsequent to nitric oxide (NO) production by endothelial cells. The effects of cAMP and cGMP phosphodiesterase (PDE) inhibitors were investigated in phenylephrine-precontracted rat aorta rings by using the specific inhibitors of PDE I, III, IV and V as relaxing agents (calmodulin-activated PDE inhibitors, IBMX and $W_7$, type I; cAMP-specific PDE inhibitors, milrinone, type IV; Ro 20-1724, type III and cGMP-specific PDE inhibitor, zaprinast, type V). All the PDE inhibitors produced a concentration-dependent relaxation in the ring with intact endothelium (+E). Except for milrinone, all the PDE inhibitors-induced relaxations were inhibited by removal of extracellular $Ca^{2+}$, $N^G$-nitro-L-arginine, $N^G$-nitro-L-arginine methyl ester, methylene blue (MS) or nifedipine. The specific PDE I and PDE IV inhibitors both produced endothelium-independent relaxations which were inhibited by MS in -E rings. However, zaprinast had no effect in -E rings. Except for milrinone, sodium nitroprusside (a NO donor)-induced relaxation was significantly augmented by all PDE inhibitors in +E rings. The results suggest that I) the vasorelaxant properties of IBMX, $W_7$, Ro 20-1724 and zaprinast are dependent on endothelium or on interaction with $Ca^{2+}$ regulation, 2) each PDE is differently distributed in vascular tissues (endothelial and smooth muscle cells), 3) the vasodilations of PDE inhibitors are due to the increase of cAMP and cGMP formation through inhibition of cAMP- and cGMP-PDE and 4) the vasodilation action of milrinone does not involve in endothelial-cyclic nucleotide system.

The History of Korean GMP (우리나라 GMP 변천사)

  • Paik, Woo-Hyun
    • YAKHAK HOEJI
    • /
    • v.59 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • The term "GMP" firstly came on the 1962 amendment of the Federal Food, Drug and Cosmetic (FD&C) Act and the US FDA established and officially announced the Good Manufacturing Practice Regulation for the first time in the world in 1963. In 1969, the World Health Organization published the GMP regulation and recommended that member states adopt the GMP regulation and implement the "GMP Certification Scheme" for international commerce of finished pharmaceutical products. As a result, GMP requirements have become important ones that have to be complied with in the manufacture of pharmaceutical products. The Korean GMP regulation was announced as the official notification by the Ministry of Health and Social Affairs in 1977. The KGMP regulation was voluntarily adopted by pharmaceutical companies at the early stage, but it had become mandatory. In addition, various kinds of GMP regulations have been established to cover active pharmaceutical ingredients, biological products and others, in addition to finished pharmaceutical products. Taking account of technological development and changes in the pharmaceutical environments, the KGMP regulation was fully amended and harmonized with GMP requirements of developed countries. In this way, the KGMP has developed to keep up with international trends and standards, leading to accession to the Pharmaceutical Inspection Cooperation Scheme (PIC/S).

Effect of PEL Exopolysaccharide on the wspF Mutant Phenotypes in Pseudomonas aeruginosa PA14

  • Chung, In-Young;Choi, Kelly B.;Heo, Yun-Jeong;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1227-1234
    • /
    • 2008
  • Pseudomonas aeruginosa is an opportunistic human pathogen that produces and secretes exopolysaccharides (EPS), in which cells are embedded to form a highly organized community structure called biofilm. Here, we characterized the role of cyclic diguanylate (c-di-GMP) and EPS (PEL) overproduction in the wspF mutant phenotypes of P. aeruginosa PA14 (wrinkly appearance, hyperadherence, impaired motilities, and reduced virulence in acute infections). We confirmed that the elevated c-di-GMP level plays a key role in all the wspF mutant phenotypes listed above, as assessed by ectopic expression of a c-di-GMP-degrading phophodiesterase (PvrR) in the wspF mutant. In contrast, PEL EPS, which is overproduced in the wspF mutant, was necessary for wrinkly appearance and hyperadherence, but not for the impaired flagellar motilities and the attenuated virulence of the wspF mutant. These results suggest that c-di-GMP affects flagellar motility and virulence, independently of EPS production and surface adherence of this bacterium.

Effects of Nitric Oxide Donor Supplementation on Copper Deficient Embryos and Nitric Oxide-Mediated Downstream Signaling (Nitric Oxide Donor 첨가가 구리 결핍 배아의 발달과 Nitric Oxide 하위 신호전달체계에 미치는 영향)

  • Yang, Soo-Jin
    • Journal of Nutrition and Health
    • /
    • v.41 no.8
    • /
    • pp.691-700
    • /
    • 2008
  • One suggested mechanism underlying copper (Cu) deficiency teratogenicity is a low availability of nitric oxide (NO), signaling molecule which is essential in developmental processes. Increased superoxide anions secondary to decreased activities of Cu-zinc superoxide dismutase (Cu-Zn SOD) in Cu deficiency can interact with NO to form peroxynitrite, which can nitrate proteins at tyrosine residues. In addition, peroxynitrite formation can limit NO bioavailability. We previously reported low NO availability and increased protein nitration in Cu deficient (Cu-) embryos. In the current study, we tested whether Cu deficiency alters downstream signaling of NO by assessing cyclic GMP (cGMP) and phosphorylated vasodilator-stimulating phosphoprotein (VASP) levels, and whether NO supplementation can affect these targets as well as protein nitration. Gestation day 8.5 embryos from Cu adequate (Cu+) or Cu- dams were collected and cultured in either Cu+ or Cu- media for 48 hr. A subset of embryos was cultured in Cu- media supplemented with a NO donor (DETA/NONOate; 20 ${\mu}M$) and/or Cu-Zn SOD. Cu-/Cu- embryos showed a higher incidence of embryonic and yolk sac abnormalities, low NO availability, blunted dose-response in NO concentrations to increasing doses of acetylcholine, low mRNA expression of endothelial nitric oxide synthase (eNOS), increased levels of 3-nitrotyrosine (3-NT) compared to Cu+/Cu+ controls. cGMP concentrations tended to be low in Cu-/Cu- embryos, and they were significantly lower in Cu-/Cu- yolk sacs than in controls. Levels of phosphorylated VASP at serine 239 (P-VASP) were similar in all groups. NO donor supplementation to the Cu- media ameliorated embryonic and yolk sac abnormalities, and resulted in increased levels of cGMP without altering levels of P-VASP and 3-NT. Taken together, these data support the concept that Cu deficiency limits NO availability and alters NO/cGMP-dependent signaling in Cu- embryos and yolk sacs, which contributes to Cu deficiency-induced abnormal development.

Mutant cAMP Receptor Protein Binds to DNA without DNA Bending (DNA 벤딩(휨) 없이 돌연변이 cAMP 수용체 단백질의 결합)

  • Gang, Jong-Back
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1225-1228
    • /
    • 2006
  • Cyclic AMP receptor protein (CRP) complexed with cAMP binds to DNA and induces sharp DNA bending around ${\sim}90$ degree. Previous publication (5), however, reported that mutant CRP:cGMP complex showed high migration rate relative to mutant CRP:cAMP complex on native polyacrylamide gel. To confirm DNA structural change in the presence of CRP and cyclic nucleotide, molar cyclization factor $(j_M)$ [13] was measured with 6 constructed DNA fragments. Nonlinear regression analysis of $j_M$ data indicated that mutant CRP did not induce DNA bending in the presence of cGMP but bent DNA in the presence of cAMP without any helical twist change in DNA.

The Vasodilating Mechanism of Sodium Nitroprusside and Forskolin on Phorbol dibutyrate-Induced Contractions in Rat Aorta (Sodium nitroprusside와 Forskolin의 Phorbol ester 수축에 대한 혈관이완작용의 기전)

  • Ahn, Hee-Yul
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.291-297
    • /
    • 1995
  • The objectives of this study is to compare the inhibitory mechanism of sodium nitroprusside and forskolin on the phorbol ester, activator of protein kinase C (PKC), -induced contractions in rat aorta. $0.1\;{\mu}M$ phorbol dibutyrate (PDBu) induced sustained contractions and increased phosphorylations of myosin light chain (MLC) time-dependently. At 30 min, the contractions and phosphorylations of MLC by PDBu were augmented maximally and remained constant. Moreover, $^{45}Ca^{2+}$ uptake was increased 30 min after PDBu stimulation from resting values. Sodium nitroprusside which activates guanylyl cyclase followed by increasing cGMP, inhibited the PDBu-induced contractions concentration-dependently. On the other hand, forskolin which activates adenylyl cyclase followed by increasing cAMP, also inhibited the PDBu-induced contractions concentration-dependently. However, sodium nitroprusside was more potent to inhibition of the PDBu-induced contractions than forskolin. Sodium nitroprusside inhibited $^{45}Ca^{2+}$ uptake by PDBu stimulation. Forskolin also inhibited $^{45}Ca^{2+}$ uptake by PDBu stimulation. Sodium nitroprusside and forskolin inhibited the phosphorylations of MLC by PDBu, respectively. However, sodium nitroprusside was more potent to inhibition of phosphorylations of MLC by PDBu than forskolin. From these results, Sodium nitroprusside via cGMP or forskilin via cAMP may reduce myoplasmic $Ca^{2+}$ followed by suppression of phosphorylations of MLC of PKC-mediated contractions, which results in vasodilation. However, cGMP may play a role more importantly than cAMP on the regulation of protein kinase C-mediated contraction in vascular smooth muscle.

  • PDF

Effects of Phosphodiesterase 5 Inhibition with Sildenafil on Atrial Contractile and Secretory Function

  • Quan, He Xiu;Kim, Sun-Young;Jin, Xuan-Shun;Park, Jong-Kwan;Kim, Sung-Zoo;Cho, Kyung-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.149-154
    • /
    • 2006
  • Selective inhibition of phosphodiesterase (PDE) 5 opened a new therapeutic approach for cardiovascular disorders. Therefore, the effect of PDE5 inhibition on the cardiac function should thoroughly be defined. The purpose of the present study was to define the effects of sildenafil, a selective inhibitor of PDE5, on the atrial cGMP efflux, atrial dynamics, and the release of atrial natriuretic peptide (ANP). By perfusing rabbit left atria to allow atrial pacing, changes in atrial stroke volume and pulse pressure, transmural extracellular fluid translocation, cGMP efflux, and ANP secretion were measured. SIN-I, an NO donor and soluble (s) guanylyl cyclase (GC) activator, and C-type natriuretic peptide (CNP), an activator of particulate (p) GC activator, were used. Sildenafil increased basal levels of cGMP efflux slightly but not significantly. Sildenafil in a therapeutic dose increased atrial dynamics (for atrial stroke volume, $2.84{\pm}1.71%$, n=12, vs $-0.71{\pm}0.86%$, n=21; p<0.05) and decreased ANP release ($-9.02{\pm}3.36%$, n=14, vs $1.35{\pm}3.25%$, n=23; p < 0.05), however, it had no effect on the SIN-1- or CNP-induced increase of cGMP levels. Furthermore, sildenafil in a therapeutic dose accentuated SIN-1-induced, but not CNP-induced, decrease of atrial pulse pressure and ANP release. These data indicate that PDE5 inhibition with sildenafil has a minor effect on cGMP levels, but has a distinct effect on pGC-cGMP- and sGC-cGMP-induced contractile and secretory function.