Effects of Phosphodiesterase 5 Inhibition with Sildenafil on Atrial Contractile and Secretory Function

  • Quan, He Xiu (Departments of Physiology and Urology, Institute for Medical Sciences, Institute for Basic Sciences, Chonbuk National University Medic School) ;
  • Kim, Sun-Young (Departments of Physiology and Urology, Institute for Medical Sciences, Institute for Basic Sciences, Chonbuk National University Medic School) ;
  • Jin, Xuan-Shun (Departments of Physiology and Urology, Institute for Medical Sciences, Institute for Basic Sciences, Chonbuk National University Medic School) ;
  • Park, Jong-Kwan (Departments of Physiology and Urology, Institute for Medical Sciences, Institute for Basic Sciences, Chonbuk National University Medic School) ;
  • Kim, Sung-Zoo (Departments of Physiology and Urology, Institute for Medical Sciences, Institute for Basic Sciences, Chonbuk National University Medic School) ;
  • Cho, Kyung-Woo (Departments of Physiology and Urology, Institute for Medical Sciences, Institute for Basic Sciences, Chonbuk National University Medic School)
  • Published : 2006.06.21

Abstract

Selective inhibition of phosphodiesterase (PDE) 5 opened a new therapeutic approach for cardiovascular disorders. Therefore, the effect of PDE5 inhibition on the cardiac function should thoroughly be defined. The purpose of the present study was to define the effects of sildenafil, a selective inhibitor of PDE5, on the atrial cGMP efflux, atrial dynamics, and the release of atrial natriuretic peptide (ANP). By perfusing rabbit left atria to allow atrial pacing, changes in atrial stroke volume and pulse pressure, transmural extracellular fluid translocation, cGMP efflux, and ANP secretion were measured. SIN-I, an NO donor and soluble (s) guanylyl cyclase (GC) activator, and C-type natriuretic peptide (CNP), an activator of particulate (p) GC activator, were used. Sildenafil increased basal levels of cGMP efflux slightly but not significantly. Sildenafil in a therapeutic dose increased atrial dynamics (for atrial stroke volume, $2.84{\pm}1.71%$, n=12, vs $-0.71{\pm}0.86%$, n=21; p<0.05) and decreased ANP release ($-9.02{\pm}3.36%$, n=14, vs $1.35{\pm}3.25%$, n=23; p < 0.05), however, it had no effect on the SIN-1- or CNP-induced increase of cGMP levels. Furthermore, sildenafil in a therapeutic dose accentuated SIN-1-induced, but not CNP-induced, decrease of atrial pulse pressure and ANP release. These data indicate that PDE5 inhibition with sildenafil has a minor effect on cGMP levels, but has a distinct effect on pGC-cGMP- and sGC-cGMP-induced contractile and secretory function.

Keywords

References

  1. Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, Osterloh IH, Gingell C. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 8: 47- 52, 1996
  2. Cheitlin MD, Hutter AM, Jr, Brindis RG, Ganz P, Kaul S, Russell RO Jr, Zusman RM, Forrester JS, Douglas PS, Faxon DP, Fisher JD, Gibbons RJ, Halperin JL, Hochman JS, Kaul S, Weintraub WS, Winters WL Jr, Wolk MJ. Use of sildenafil (Viagra) in patients with cardiovascular disease. Circulation 99: 168-177, 1999 https://doi.org/10.1161/01.CIR.99.1.168
  3. Chiang CE, Luk HN, Wang TM, Ding P YA. Effects of sildenafil on cardiac repolization. Cardiovasc Res 55: 290-299, 2002 https://doi.org/10.1016/S0008-6363(02)00438-8
  4. Cho KW, Kim SH, Kim CH, Seul KH. Mechanical basis of atrial natriuretic peptide secretion in beating atria: atrial stroke volume and ECF translocation. Am J Physiol 268: R1129- R1136, 1995
  5. Cho KW, Lee SJ, Wen JF, Kim SH, Seul KH, Lee HS. Mechanical control of extracellular space in rabbit atria: an intimate modulator of the translocation of extracellular fluid and released atrial natriuretic peptide. Exp Physiol 87: 185-194, 2002 https://doi.org/10.1113/eph8702302
  6. Cremers B, Scheler M, Maack C, Wendler O, Schafers HJ, Sudkamp M, Bohm M. Effects of sildenafil (Viagra) on human myocardial contractility, in vitro arrhythmias, and tension of intrnal mammaria arteries and saphenous veins. J Cardiovasc Pharmacol 41: 734-743, 2003 https://doi.org/10.1097/00005344-200305000-00010
  7. Cui X, Wen JF, Jin JY, Xu WX, Kim SZ, Kim SH, Lee HS, Cho KW. Protein kinase-dependent and $Ca^{2+}$-independent cAMP inhibition of ANP release in beating rabbit atria. Am J Physiol 282: R1477-R1489, 2002
  8. Das A, Xi L, Kukreja RC. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. J Biol Chem 280: 12944-12955, 2005 https://doi.org/10.1074/jbc.M404706200
  9. Dazert P, Meissner K, Vogelgesang S, Heydrich B, Eckel L, Boem M, Warzok R, Kerb R, Brinkmann U, Schaeffeler E, Schwab M, Cascorbi I, Jedlitschky G, Kroemer HK. Expression and localization of the multidrug resistance protein 5 (MRP5/ABCC5), a cellular export pump for cyclic nucleotides, in human heart. Am J Pathol 163: 1567-1577, 2003 https://doi.org/10.1016/S0002-9440(10)63513-4
  10. De Bold ML, De Bold AJ. Effect of manipulations of $Ca^{2+}$ environment on atrial natriuretic factor release. Am J Physiol 256: H1588-H1594, 1989
  11. Deng Y, Lang R. The influence of calcium on ANF release in the isolated rat atrium. Can J Physiol Pharmacol 70: 1057-1060, 1992 https://doi.org/10.1139/y92-145
  12. Du Toit EF, RossouwE, Salie R, Opie LH, Lochner A. Effect of sildenafil on reperfusion function, infarct size, and cyclic nucleotide levels in the isolated rat heart model. Cardiovasc Drug Ther 19: 23-31, 2005 https://doi.org/10.1007/s10557-005-6894-2
  13. Fischmeister R, Hartzell HC. Cyclic AMP phosphodiesterases and $Ca^{2+}$ current regulation in cardiac cells. Life Sci 48: 2365-2376, 1991 https://doi.org/10.1016/0024-3205(91)90369-M
  14. Geelen P, Drolet B, Rail J, Berube J, Deleau P, Rousseau G, Cardinal R, O'Hara GE, Turgeon J. Sildenafil (Viagra) prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current. Circulation 102: 275-277, 2000 https://doi.org/10.1161/01.CIR.102.3.275
  15. Giordano D, De Stefano ME, Citro G, Modica A, Giorgi M. Expression of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in mouse tissues and cell lines using an antibody against the enzyme amino-terminal domain. Biochim Biophys Acta 1539: 16- 27, 2001 https://doi.org/10.1016/S0167-4889(01)00086-6
  16. Iida H, Page E. Determinants of atrial natriuretic peptide secretion in cultured atrial myocytes. Am J Physiol 256: C608-C613, 1989 https://doi.org/10.1152/ajpcell.1989.256.3.C608
  17. Ito M, Nishikawa M, Fujioka M, Miyahara M, Isaka N, Shiku H, Nakano T. Characterization of the isozymes of cyclic nucleotide phosphodiesterase in human platelets and the effects of E4021. Cell Signal 8: 575-581, 1996 https://doi.org/10.1016/S0898-6568(96)00112-X
  18. Ito T, Toki Y, Siegel N, Gierse JK, Needleman P. Manipulation of stretch-induced atriopeptin prohormone release and processing in the perfused rat heart. Proc Natl Acad Sci USA 85: 8365- 8369, 1988
  19. Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem 275: 30069-30074, 2000 https://doi.org/10.1074/jbc.M005463200
  20. Kim SH, Cho KW, Chang SH, Kim SZ, Chae SW. Glibenclamide suppresses stretch-activated ANP secretion: involvements of $K^{+}_{ATP}$ channel and L-type $Ca^{2+}$ channel modulation. Pflugers Arch 434: 362-372, 1997 https://doi.org/10.1007/s004240050409
  21. Lee SJ, Kim SZ, Cui X, Kim SH, Lee KS, Chung YJ, Cho KW. C-type natriuretic peptide inhibits ANP secretion and atrial dynamics in perfused atria: NPR-B-cGMP signaling. Am J Physiol 278: H208-H221, 2000
  22. Li D, Quan HX, Wen JF, Jin JY, Park SH, Kim SY, Kim SZ, Cho KW. $Ca^{2+}$-induced $Ca^{2+}$ release from sarcoplasmic reticulum negatively regulates myocytic ANP release in beating rabbit atria. Korean J Physiol Pharmacol 9: 87-94, 2005
  23. Loughney K, Hill TR, Florio VA, Uher L, Rosman GJ, Wolda SL, Jones BA, Howard ML, McAllister-Lucas LM, Sonnenburg WK, Francis SH, Corbin JD, Beavo JA, Ferguson K. Isolation and characterization of cDNAs encoding PDE5A, a human cGMPbinding, cGMP-specific 3',5'-cyclic nucleotide phosphodiesterase. Gene 216: 139-147, 1998 https://doi.org/10.1016/S0378-1119(98)00303-5
  24. Ruskoaho H, Toth M, Ganten D, Unger Th, Lang RE. The phorbol ester induced atrial natriuretic peptide secretion is stimulated by forskolin and BAY K 8644 and inhibited by 8-bromo-cyclic GMP. Biochem Biophys Res Commun 139: 266-274, 1986 https://doi.org/10.1016/S0006-291X(86)80108-5
  25. Ruskoaho H, Vuolteenaho O, Leppaluoto J. Phorbol esters enhance stretch-induced atrial natriuretic peptide secretion. Endocrinology 127: 2445-2455, 1990 https://doi.org/10.1210/endo-127-5-2445
  26. Sarazan RD, Crumb WJ Jr, Beasley CM Jr, Emmick JT, Ferguson KM, Strnat CA, Sausen PJ. Absence of clinically important HERG channel blockade by three compounds that inhibit phosphodiesterase 5-sildenafil, tadalafil, and vardenafil. Eur J Pharmacol 502: 163-167, 2004 https://doi.org/10.1016/j.ejphar.2004.09.005
  27. Senzaki H, Smith CJ, Juang GJ, Isoda T, Mayer SP, Ohler A, Paolocci N, Tomaselli GF, Hare JM, Kass DA. Cardiac phosphodiesterase 5 (cGMP-specific) modulates b-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J 15: 1718-1726, 2001 https://doi.org/10.1096/fj.00-0538com
  28. Stacey P, Rulten S, Dapling A, Phillips SC. Molecular cloning and expression of human cGMP-binding cGMP-specific phosphodiesterase (PDE5). Biochem Biophys Res Commun 247: 249-254, 1998 https://doi.org/10.1006/bbrc.1998.8769
  29. Stief CG, Ueckert S, Becker AJ, Harringer W, Truss MC, Forssmann W-G, Jonas U. Effects of sildenafil on camp and cGMP levels in isolated human cavernous and cardiac tissue. Urology 55: 146-150, 2000 https://doi.org/10.1016/S0090-4295(99)00371-4
  30. Sugiyama A, Takeuchi N, Saegusa Y, Sugita M, Hashimoto K. molecular mechanisms of cardiostimulatory effects of sildenafil. Jpn J Pharmacol 88:362-364, 2002 https://doi.org/10.1254/jjp.88.362
  31. Takimoto E, Champion HC, Belardi D, Moslehi J, Mongillo M, Mergia E, Montrose DC, Isoda T, Aufiero K, Zaccolo M, Dostmann WR, Smith CJ, Kass DA. CGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3- dependent mechanism. Circ Res 96: 100-109, 2005 https://doi.org/10.1161/01.RES.0000152262.22968.72
  32. Wallis RM, Corbin JD, Francis SH, Ellis P. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 83: 3C-12C, 1999
  33. Wen JF, Cui X, Ahn JS, Kim SH, Seul KH, Kim SZ, Park YK, Lee HS, Cho KW. Distinct roles for L- and T-type $Ca^{2+}$ channels in regulation of atrial ANP release. Am J Physiol Heart Circ Physiol 279: H2879-H2888, 2000 https://doi.org/10.1152/ajpheart.2000.279.6.H2879
  34. Wen JF, Cui X, Jin JY, Kim SM, Kim SZ, Kim SH, Lee HS, Cho KW. High and low gain switches for regulation of cAMP efflux concentration. Distinct roles for particulate GC- and soluble GC-cGMP-PDE3 signaling in rabbit atria. Circ Res 94: 936-943, 2004 https://doi.org/10.1161/01.RES.0000123826.70125.4D
  35. Yanaka N, Kotera J, Ohtsuka A, Akatsuka H, Imai Y, Michibata H, Fujishige K, Kawai E, Takebayashi SI, Okumura K, Omori K. Expression, structure and chromosomal localization of the human cGMP-binding cGMP-specific phosphodiesterase PDE5A gene. Eur J Biochem 255: 391-399, 1998 https://doi.org/10.1046/j.1432-1327.1998.2550391.x
  36. Zusman RM, Morales A, Glasser DB, Osterloh IH. Overall cardiovascular profile of sildenafil citrate. Am J Cardiol 83: 35C-44C, 1999 https://doi.org/10.1016/S0002-9149(99)00046-6